
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Artificial Intelligence and Systems Engineering

Efficient Automatic Verification
of Concurrent Programs

Master’s Thesis

Author Advisor
Csanád Telbisz Levente Bajczi

December 6, 2024

Contents

Kivonat 4

Abstract 5

1 Introduction 6

2 Preliminaries 9
2.1 Satisfiability Modulo Theories . 9
2.2 Representation . 10
2.3 Abstraction . 12

2.3.1 Common Abstract Domains . 12
2.3.2 Counterexample-Guided Abstraction Refinement 13

3 Abstraction-Based Partial Order Reduction 15
3.1 Preliminaries . 17

3.1.1 Partial Order Reduction . 18
3.2 Abstraction-Aware Partial Order Reduction 18

3.2.1 Dependency relations . 19
3.2.2 Partial Feasibility . 20
3.2.3 Relaxed Partial Order Representation 21
3.2.4 Source Sets for Abstraction-Aware Partial Order Reduction 24

3.3 Static Abstraction-Aware Partial Order Reduction Algorithm 27
3.4 Experiments . 29

3.4.1 Experiment Design . 30
3.4.2 Experimental Results . 30
3.4.3 Evaluation Summary . 31
3.4.4 Threats to Validity . 32

3.5 Related Work . 32

4 Abstract Data-Flow-Based Statement Reduction 34

4.1 Statement Reduction during Dynamic Analysis 35
4.1.1 Data-Flow Graph with Precision . 36
4.1.2 Simplifying Statements On-the-Fly Based on Data-Flow 37
4.1.3 Statement Simplification with CEGAR 40

4.2 Experimental Evaluation . 41
4.2.1 Research Questions . 41
4.2.2 Experimental Configuration . 42
4.2.3 Experiment Results . 42
4.2.4 Threats to Validity . 44

4.3 Related Work . 45

5 Verification with Partial Orders 46
5.1 Weak Memory Models . 48
5.2 Partial Orders . 48
5.3 Verification with Partial Orders . 51

5.3.1 Symbolic Encoding of Multi-threaded Programs 51
5.3.2 Ordering Consistency Theory . 53

5.4 Automatic Conflict Detection . 54
5.4.1 Over-Approximation of the Happens-Before Relation 55
5.4.2 Bounded Cycles in the Potential Happens-Before Relation 58

5.5 Experimental Evaluation . 59
5.5.1 Research Questions and Experiment Setup 60
5.5.2 Experiment Results . 60
5.5.3 Threats to Validity . 62

5.6 Related Work . 63

6 Conclusion 65

Acknowledgements 66

List of Figures 67

Bibliography 67

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

Mesterséges Intelligencia és Rendszertervezés Tanszék

1117 Budapest, XI. Magyar tudósok körútja 2.

I ép. E szárny, IV. em. E444.

Tel.: (+36 1) 463-2057, fax: (+36 1) 463-4112

DIPLOMATERVEZÉSI FELADAT

Telbisz Csanád Ferenc
szigorló mérnökinformatikus hallgató részére

Többszálú programok hatékony automatikus verifikációja

A kritikus beágyazott rendszerek világában mind a mai napig nehézséget jelent a többmagos
processzorok hatékony kihasználása, főként a komplexitás biztonsági implikációi miatt.
Hagyományos szoftververifikációs módszerek, mint például a tesztelés, nem tudják megfelelő
biztonsággal kiértékelni a több szálon futó programok viselkedését.

Egy megoldást nyújthat erre a problémára a modellellenőrzés, mely egy formális
megközelítéssel bizonyíthatja a programok biztonságát, illetve adhat ellenpéldát. Azonban a
tipikusan nagyon nagy (bizonyos esetekben végtelen) állapotterek gátolhatják a
modellellenőrzés praktikus felhasználását. Többféle módszer létezik ezen akadály leküzdésére.
Egyik gyakran alkalmazott megközelítés a korlátos modellellenőrzés, amikor eleve korlátozzuk
a verifikáció hatókörét azáltal, hogy a program viselkedését csak egy megszabott mélységig
értékeljük ki. Egy másik lehetőség az absztrakció alkalmazása, melynek segítségével
csoportosíthatóak a program állapotai és ezzel lényegesen kisebb állapottér fölött működhet a
modellellenőrző.

Többszálú programok esetén még rosszabbul skálázódik a modellellenőrzés, ezért specializált
módszerek szükségesek a komplexitás leküzdéséhez. A hallgató feladata, hogy
diplomamunkája keretében vizsgálja a párhuzamos programok absztrakcióalapú, illetve
korlátos modellellenőrzési verifikációs lehetőségeit.

A hallgató feladatának a következőkre kell kiterjednie:

• Mutasson be létező absztrakció alapú és korlátos modellellenőrzési technikákat
párhuzamos programok verifikációjára!

• Elemezze, hogyan lehetne javítani a létező megközelítések hatékonyságán algoritmikus
szempontból!

• Matematikailag igazolja a kifejlesztett vagy módosított algoritmusok helyességét!

• Implementálja a bemutatott algoritmusokat és a kifejlesztett optimalizációkat egy
modellellenőrző eszközben!

• Értékelje ki az implementált algoritmusok teljesítményét párhuzamos programok egy
nagyobb méretű benchmark készletén!

Tanszéki konzulens: Bajczi Levente (doktorandusz)

Budapest, 2024. szeptember 12.

………………………………
 Dr. Dabóczi Tamás

tanszékvezető
egyetemi tanár, DSc.

HALLGATÓI NYILATKOZAT

Alulírott Telbisz Csanád, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot meg nem
engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakiro-
dalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos
értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával
megjelöltem.
Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű
tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető
elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül
(vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka
és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek
esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2024. december 6.

Telbisz Csanád
hallgató

Kivonat

A többmagos processzorok biztonságkritikus rendszerekben történő térhódításának kö-
szönhetően egyre gyakrabban használnak többszálú programokat. A szoftververifikáció
komplexitása viszont tovább nő a párhuzamosság megjelenésével a program szálainak
nagyszámú lehetséges átlapolódása miatt. A komplexitásnövekedés eredménye, hogy a
megfelelő tesztlefedettség elérése még nagyobb kihívást jelent, a naiv verifikációs technikák
pedig gyakran gyakorlatilag használhatatlanná válnak. A formális verifikációs technikák
megadhatják a kívánt biztonsági garanciákat, ugyanakkor kifinomult algoritmusokra van
szükség a párhuzamos rendszerek komplexitásának kezeléséhez.

A részbenrendezésen alapuló redukció (partial order reduction) hatékony technika a
modellellenőrzés területén az átlapolódások nagy számának kezelésére. A módszer felis-
meri, ha a program bizonyos utasításai egymástól független műveleteket végeznek, és ez
alapján nem minden szál átlapolódást vizsgál meg. Diplomamunkámban új elméleti keret-
rendszert adok, melyben a részbenrendezésen alapuló redukciós technikák absztrakcióalapú
verifikációval kombinálhatók. Megközelítésem az utasítások közti függőség vizsgálatakor az
aktuális absztrakcióban elérhető információkra is támaszkodik. A függőség okának absztra-
hálásával bizonyos műveletpárok függetlennek tekinthetők, így összességében csökkenthető
a modellen belüli függőség. Következésképp a redukciós technika hatékonysága nő.

Az állapottér bejárása során a követő állapotok kiszámítása, vagyis az utasítások
kiértékelése költséges feladat, melyhez gyakran egy SMT (Satisfiability Modulo Theori-
es) probléma megoldása is szükséges. Sok esetben azonban egy program utasítás nincs
hatással az ellenőrzött tulajdonságra. Ilyen esetekben egyszerűsíthető a követő állapotok
kiszámítása. Számos algoritmus létezik, melyek statikusan elemzik a modellt és eltávolít-
ják a modellből a nem releváns változókat vagy utasításokat. Párhuzamos szoftverekben
azonban gyakori, hogy egy utasítás eredményét a szálak egy bizonyos átlapolódásában
használják másik utasítások, míg egy másik ütemezés mellett nem használják. A modellt
statikusan elemző algoritmusok nem tudják kiegyszerűsíteni az ilyen utasításokat. Az én
dinamikus megközelítésem az állapottér bejárása során észleli a szálak aktuális állapota
alapján, hogy egy utasítás kihagyható-e.

Számos ígéretes modellellenőrzési technika létezik a párhuzamos programok formá-
lis verifikációjára, melyek a programot és az ellenőrzött követelményt SMT problémaként
kódolják az érvelést az SMT megoldók erejére bízva. Ezen többszálú programok verifi-
kációjára szolgáló eljárások lényege, hogy a párhuzamos szálak eseményeinek (változó-
hozzáféréseinek) konzisztens sorrendezését igyekeznek biztosítani. Az eljárás megtalálja és
kiküszöböli a párhuzamos események körkörös precedenciájából fakadó inkonzisztenciát.
Noha az SMT megoldók sok szempontból hatékonyak, mégiscsak általános célú eszközök,
így számos lehetőség van doménspecifikus optimalizálásra. Munkámban egy ilyen kiegészí-
tést javaslok, mely képes megtalálni az ütemezési következetlenségeket és ezekkel bővíteni
a kódolt SMT formulát még az SMT megoldó eljárás megkezdése előtt. A megoldó keresési
tere ezáltal jelentősen korlátozható, a verifikációs teljesítmény pedig jelentősen javítható.

4

Abstract

As multi-core processors gain popularity in safety-critical systems, multi-threaded pro-
grams are increasingly used. Concurrency introduces a new level of complexity into soft-
ware verification due to the great number of possible thread interleavings. Achieving
satisfying test coverage is even more challenging, and naive verification techniques often
become practically infeasible due to this complexity. Formal verification techniques can
provide the desired safety guarantees. However, sophisticated algorithms are needed to
handle the complexity of a concurrent system.
Partial order reduction has proven to be an effective technique to address the problem of
interleavings in model checking. The approach detects independent program statements
and skips the exploration of certain thread interleavings based on this information. I
present a novel theoretical framework that combines partial order reduction algorithms
with abstraction-based verification. My approach relies on supplementary information
from the applied abstraction when calculating dependencies between program operations.
By abstracting the sources of dependency, certain operations are deemed independent,
reducing interdependence within the model. Consequently, the effectiveness of partial
order reduction is amplified.
Calculating successor states in software model checking is costly, often requiring solving a
Satisfiability Modulo Theories (SMT) problem. However, in many cases, the evaluation of
a program statement does not affect the verified property. Successor state calculation can
be simplified in such cases. Existing algorithms, such as the cone-of-influence reduction,
statically analyze the program and eliminate irrelevant variables. In concurrent software,
however, the result of a statement may be used in one interleaving of threads while unused
in another. Algorithms that statically analyze the program cannot simplify such state-
ments. My on-the-fly approach detects whether a statement can be simplified during the
state space exploration based on the current state of each thread.
Promising model checking approaches have been developed that encode the whole concur-
rent program and the verified property as an SMT problem, leaving the reasoning to the
strength of SMT solvers. These methods for concurrent software verification ensure that
events (variable accesses) of concurrent threads are consistently ordered. Inconsistencies
in the form of cyclic precedence of concurrent events are detected and excluded. While
SMT solvers are highly optimized, they remain general-purpose tools, leaving room for
domain-specific optimization. I propose a domain-specific optimization to find schedul-
ing inconsistencies and strengthen the encoding formula before starting the SMT-solving
procedure. This way, the solver search space can be greatly reduced, and the overall
verification performance can be significantly improved.

5

Chapter 1

Introduction

The presence of computerized solutions in industrial systems and everyday life highlights
the need for reliable software. In safety-critical systems where faults are intolerable, guar-
anteed - mathematical - correctness is often required, which conventional verification tech-
niques such as testing cannot offer. Formal software verification - a method that can
mathematically prove safety guarantees for software - has been a field of active research in
the last few decades [54, 30, 77, 1]. Rapid development in technology led to the increasing
popularity of multi-core processors and multi-threaded programs in industrial systems.
Today, multi-core processors are available for various targets, from personal computers
to safety-critical systems. In a critical system, the increased computing capacity of a
multi-core processor may add extra resources to the critical functionalities. Nonetheless,
functionally correct behavior is still crucial.
In formal software verification, verified properties are typically reachability criteria
(whether a particular error state is reachable by any execution of the program), memory-
safety (no memory leak or memory handling issue), termination (whether all program
executions terminate), or data race freedom (data race cannot occur in the concurrent
program). In the scope of this work, reachability criteria are considered exclusively. Model
checking is a formal verification technique where properties are verified by analyzing the
program’s state space [54]. Generally, the input of a model checking algorithm is a model
and a formal requirement (or specification, safety property equivalently). The output is a
verdict: the model is either safe or unsafe. The input model in the scope of this paper is a
multi-threaded program. For reachability analysis, specific points of the verified program
are marked as unsafe using assertions as formal requirements. If an assertion fails in any
possible program execution, the reachability criterion is said to be violated.
Formal verification methods take a program and a safety property and try to prove or
refute that the property holds for all possible program executions. The verification of
concurrent software has always been a challenge due to the great number of possible thread
interleavings. For concurrent programs, the verification aims to find a program execution
(a specific interleaving of concurrent instructions) that violates the safety property of the
verification or to prove that such execution does not exist.
Formal software verification suffers from the state space explosion problem since the state
space of a program often grows exponentially with the number of variables and the size
of their domains [35]. Efficient approaches to handle this problem are abstraction [54, 34]
and bounded model checking (BMC) [29, 77], among other techniques. Abstraction is a
complete and sound approach to model checking, which often induces huge computational
costs, limiting the applicability of the technique. Bounded model checking trades com-

6

Verification Task

Program

Specification

Verifier

UNSAFE SAFE

Figure 1.1: Formal Verification with Witness Validation.

pleteness of the approach for performance: it looks for bugs up to a certain depth of the
program’s behavior. In turn, BMC approaches typically faster. The bound can be applied
in different ways: either by constraining the depth of the explored state space or by ap-
plying an upper bound for the number of loop iterations in the program. While BMC is
often unsuitable for providing a complete proof of correctness of a program (e.g., when we
have infinite loops), it is a powerful method for finding safety violations in the program.
Concurrency introduces a new level of complexity to software verification due to the great
number of possible thread interleavings. The violation of the safety requirement may
occur only in one interleaving of concurrent threads, while the erroneous behavior does
not happen in other interleavings. Formal verification algorithms for concurrent programs
have to explore all possible behavior. Many algorithms have been developed for concurrent
software verification to tackle the complexity of thread interleavings: initially, most were
based on exploring the state space or possible steps of the program [76, 44, 1, 67, 52].
One of the most well-known techniques for reducing the effect of the large number of
thread interleavings is partial order reduction (POR) [51, 76]. Partial order reduction is
a technique that reduces the number of interleavings explored by the model checker by
considering only a subset of the interleavings. The technique is based on the observation
that some interleavings are equivalent, and exploring all of them is unnecessary. The
core idea is that the order of adjacent independent program statements does not matter,
where dependency is determined by the interaction of statements (e.g., they write the
same global variable). In this work, I explore the possibilities of combining partial order
reduction with methods based on abstract state space exploration.
Some abstraction-based techniques like cone-of-influence (COI) reduction or program slic-
ing eliminate model elements irrelevant to the verified property [18, 60]. It is a commonly
used technique in model checking to ignore the program’s irrelevant aspects, thus acceler-
ating the verification process. However, traditional program slicing approaches face severe
challenges when applied to concurrent programs. The main reason is that the interleavings
of the threads can affect the program elements’ relevance. In this work, I propose a new
cone-of-influence approach designed explicitly for concurrent programs.
Efficient bounded model checking algorithms have also been developed for concurrent
programs that symbolically encode the program and the safety property into a formula and
then use a SAT or SMT solver to check the satisfiability of the encoded formula [8, 87, 61].
These techniques reason about the partial order of concurrent program instructions to
ensure that the found data-flow resulting in a violation of the safety property corresponds
to a valid scheduling of concurrent program instructions. In this work, I propose a novel
optimization for reasoning about partial orders that significantly reduces the size of the
solver search space.

7

Contributions. This work consists of the following main theoretical contributions to
the field of formal verification of concurrent programs:

Thesis I. I combine abstraction-based methods and partial order reduction techniques
in a general theoretical framework. I prove that applying partial order reduction in
both the traditional and the proposed abstraction-based manner invariably uncovers
error states in the abstract state space whenever the program can indeed reach an
erroneous state. As a case study, I apply the general framework to creating an
abstraction-aware variant of a widely used static partial order reduction algorithm
inside a CEGAR loop. The contribution is presented in Chapter 3.

Thesis II. I propose a new statement simplification technique for concurrent programs.
It considers the applied level of abstraction and the current thread interleaving dur-
ing state space exploration to decide whether the statement can influence the safety
requirement in the given context. If a statement is irrelevant in the current inter-
leaving of threads, the evaluation of the statement is skipped, sparing the calculation
time. The contribution is presented in Chapter 4.

Thesis III. I propose an optimized bounded model checking algorithm for verifying con-
current programs reasoning with partial orders. The proposed approach considerably
trims the model search space by strengthening the encoded program formula before
starting the verification decision procedure, thereby accelerating the verification.
The contribution is presented in Chapter 5.

Experimental evaluations of the proposed approaches and other works related to the field
are presented in each chapter. I also compare my solutions to existing state-of-the-art
verifier implementations.
As a further practical contribution to the software verification community, I developed
some concurrent programs in C (including a C version of the program in Figure 3.2)
for benchmarking concurrent program verifiers. The tasks were submitted to the central
repository1 of the international Competition on Software Verification, SV-COMP [20].

1https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1549

8

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1549

Chapter 2

Preliminaries

This section introduces the preliminary knowledge that is necessary to understand the
methods introduced in this thesis. I assume that the reader is familiar with graph theory,
first-order logic, the boolean satisfiability problem (SAT) and the basic concepts of formal
verification.

2.1 Satisfiability Modulo Theories

The satisfiability modulo theories (SMT) problem is the decision problem of determining
the satisfiability of a first-order logic formula given some background theories [42, 17]. For
example, deciding whether the formula (x < y−1 ∧ x = y+1) ∨ x > −2∗y has any real
solutions is an SMT problem with linear arithmetic as a theory. SMT is expressive enough
to be useful when formalizing a wide range of mathematical or engineering problems. On
the other hand, SMT is well-defined and constrained which makes it possible to have
efficient algorithms to tackle SMT problems. Therefore, SMT is often used as a base of
model checking algorithms [17, 8, 82].
A first-order theory T is defined by a set of symbols (constant, function, and relation
symbols) and a set of axioms which define the intended semantics of these symbols. A
model specifies the interpretation of each constant, function and relation, and defines a
nonempty entity set (or domain) which variables can instantiate. A T -model is a model
that also satisfies all axioms of theory T . A formula Φ is T -satisfiable if there is a model
of Φ that is a T -model.
Several algorithms exist for SMT solving, one traditional method is DPLL(T) [48, 17]
which we use to present the concepts in this paper. Other SMT solving procedures often
share similar ideas (e.g., conflict clauses as described below), so the method presented
in this paper can be adapted to other techniques as well. The DPLL(T) algorithm ini-
tially takes the Boolean abstraction B(Φ) of the input SMT formula Φ, where a Boolean
abstraction means that each symbol in the original formula is simply interpreted as a
propositional logic symbol forgetting about the theory (theory formulae become proposi-
tional variables). The Boolean abstraction of the above linear arithmetic example formula
could be (p∧ q)∨ r where the propositional logic variables p, q, and r represent the theory
formulae x < y − 1, x = y + 1, and x > −2 ∗ y, respectively.
DPLL(T) uses a SAT solver to check the satisfiability of B(Φ). If it is unsatisfiable, then
Φ is necessarily unsatisfiable, too. However, if the SAT solver finds a model M of B(Φ),
it is not guaranteed to be a valid model of Φ. A theory solver must be used to determine

9

whether M is consistent with the axioms of the theory. If an inconsistency is found, the
theory solver generates a conflict clause c in propositional logic which represents a violation
of the theory axioms. This way B(Φ) ∧ ¬c cannot have the same model M anymore, i.e.,
the same type of inconsistency is avoided in the future. This procedure can be repeated
until either B(Φ) augmented with the conflict clauses becomes unsatisfiable or a model is
found which is consistent with the theory axioms. In the first case Φ is unsatisfiable, while
in the latter case, it is satisfiable with the found model.
Looking at our linear arithmetic example, the Boolean abstraction of the formula is sat-
isfiable: e.g., p = q = ⊤ and r = ⊥. The linear arithmetic theory solver checks this
assignment if it is consistent with the axioms of linear arithmetic: in our case, it is not
since x < y − 1 and x = y + 1 cannot hold at the same time. Therefore, the theory
solver generates the conflict clause p∧ q which prevents the same inconsistency in further
calculations. In the next iteration, the SAT solver finds a model with r = ⊤, and the
theory solver also finds a model consistent with linear arithmetic (e.g., x = 1, y = 0).
In practice, DPLL(T) works with partial models where variables are gradually assigned
either by creating a decision point or by propagation. Some variable values may be inferred
(propagated) from the Boolean abstracted formula (in cases where setting the variable to
the negated value would lead to unsatisfiability) but it is also possible to use theory
propagation where the theory solver can deduce and propagate the values of variables
based on the partial model and the theory axioms. Theory consistency checking and
conflict clause generation is also performed based on partial models.

2.2 Representation

In this paper, I assume a computation model of concurrent programs where processes
(threads) communicate via shared variables. I assume a sequential consistency memory
model (except for Chapter 5 where I need to consider some aspects of weak memory
models). Though it would be easy to incorporate extra features into the model (such as
heap memory, dynamic thread creation or termination, and synchronization primitives), I
strive to keep my presentation simple and skip these details. My implementation for the
evaluation naturally supports these features.
Concurrent programs are represented by control-flow automata (CFA) [22]: each process
has its own (conventional) CFA representation.

Definition 1. A multi-threaded CFA is a tuple (V, P), where

• V is a set of (global) variables,

• P is a set of processes. A process is a tuple p = (L, l0, A,E), where:

– L is a set of control locations with l0 ∈ L as the initial location,
– A is a set of statements,
– E ⊆ L × A × L is a set of transitions. A transition is a directed edge with a

source control location, a target control location, and one statement. �

Each variable v ∈ V has a domain Dv (the possible values for v), and possibly an initial
value from its domain. A statement can be a deterministic assignment (v = expr), a
non-deterministic assignment (havoc v) where the new value of v can be anything from
its domain, or a guard condition ([cond]). For the verification of reachability properties,

10

int x, y;

void thread1() {
x = 1;
y = 1;
assert(y == 1);

}

void thread2() {
y = x;
x = 0;

}

(a) C source code

x = 1

L0

y = 1

L1

[y = 1] [y ≠ 1]
L2

final error

y = x

L3

x = 0

L4

L5

Process p1 Process p2

(b) CFA of the program

Figure 2.1: CFA of a multi-threaded program

some CFA locations are marked as error locations: the program is safe if no error location
can be reached by any of its processes.

Example 1. The source code in Figure 2.1a shows two C functions that are the functions
of two different threads1. The program has two global variables, x and y, which both threads
can write. The assertion in the program states the safety requirement. Figure 2.1b depicts
the CFA of the two processes. Location error is an error location of the CFA.

I define transition systems (state spaces) as follows:

Definition 2. A transition system is a tuple (S,A, T, I), where S is a set of states, A is
a set of actions, T ⊆ S × A × S is a set of transitions, and I ⊆ S is a non-empty set of
initial states. �

An action α is an outgoing action from a state s if there is a transition (s, α, s′) ∈ T for
some s′ ∈ S. I use the following notations:

• s
α−→ s′ denotes the transition (s, α, s′),

• α(s) = {s′ ∈ S : ∃(s, α, s′) ∈ T},

• outgoing(s) denotes the set of outgoing actions from s,

• vars(α) denotes the set of variables referenced by α,

• written(α) and read(α) is the set of variables written/read by α, respectively.

The state space of a program is a transition system where a state stores the CFA locations
of all processes and the values of all variables. A state is an error state if any of the
processes is in an error location in the state. I denote the control location of process p
in state s by s(p), and the value of variable v in state s by s(v). I define an expression
function for a state s based on the values of variables in s: expr(s) := ∧

v∈V (v = s(v)).
1In practice, in a real concurrent C program, the functions of different threads are provided to the

pthread_create function that can start new threads. On the other hand, as I have previously noted, I
assume that processes cannot be created dynamically for simplifying the formalization, so I omit these
details from this example as well.

11

An action of a transition corresponds to a statement of a single process (processes step
asynchronously). I use the Greek alphabet for actions, and I write pα for the process of
action α. Note that written(α) has a single item for deterministic and non-deterministic
assignments, and it is an empty set for a guard condition. By w = t1...tk, I denote a
transition sequence (or trace), and I use the following for the concatenation of transition
sequences or transitions: w.v. Often, actions are used in notations instead of transitions:
an action α used in such a context means a transition with α as its action. I also refer to
action sequences as traces. If we have a trace from a state that leads to an error state, I
call this trace an error trace.

2.3 Abstraction

An abstraction can be defined with an abstract domain, a precision, and a transfer function
[25]. In this paper, I use a simplified definition of the abstract domain:2

Definition 3. An abstract domain is a tuple (S, expr), where S is a set of abstract states,
and expr : S 7→ FOL is an expression function mapping an abstract state to a first-order
logic formula describing the state. �

I assume that CFA locations of all processes are explicitly tracked in all abstract domains:
I refer to the location of process p in a state s by s(p). An abstract state s represents a
concrete state c denoted by c |= s if c(p) = s(p) for each process p, and expr(c) implies
expr(s). In my notation, I use s for abstract states and c for concrete states. An abstract
state is an error state if any process is in an error location. An abstract trace w = α1...αk

from the abstract state s0 (s0
α1−→ ...

αk−→ sk) is feasible if w is also a trace in the concrete
state space (c0

α1−→ ...
αk−→ ck) with ci |= si; otherwise, w is spurious from s0. If w is

feasible, the sequence of concrete states c0, ..., ck is a concretization of w. The abstract
state space over-approximates the behavior of the concrete state space: if there is a trace w
from a concrete state c, then w is also a trace in the abstract state space from all abstract
states s with c |= s [25].
The precision describes which aspects the abstraction keeps, defined differently for each
domain. The variables of a precision vars(Π) are the variables that may appear in abstract
state expression formulae. That is, the abstraction tracks no information about variables
in V \ vars(Π). The transfer function calculates the successor states of an abstract state
with respect to a statement and a precision.

2.3.1 Common Abstract Domains

In this section, I briefly explain two frequently used abstract domains: explicit-value
abstraction [23] and predicate abstraction [47].

Explicit-value abstraction. In explicit-value abstraction, an abstract state is defined
by the CFA locations of processes and an abstract variable assignment. The domain Dv of
each variable v ∈ V is extended with a top value ⊤v. The top value represents an unknown
value for the variable. The precision in explicit-value abstraction is the subset of variables
Π ⊆ V that are explicitly tracked in this abstraction; vars(Π) = Π. The values of other

2Abstract states are usually defined as a semi-lattice with a partial order [25], but we do not need those
details for this paper, so I simplify.

12

Expand

Abstract counterexample

Abstractor Prune

Refined precision

RefinerAbstract
state-space

Initial precision

SAFE UNSAFE
+counterexample

Figure 2.2: The CEGAR-loop

variables are unknown in all abstract states: s(v) = ⊤v for each v ∈ V \Π. The expression
function is expr(s) = ∧

v∈V,s(v)̸=⊤v
(v = s(v)). The result of the transfer function is based

on the strongest post-operator under abstract variable assignment [23].

Predicate abstraction. In predicate abstraction, an abstract state is defined by the
CFA locations of processes and a combination of FOL predicate. The precision is the set
of FOL predicates (e.g., x > 0, y = z) that are tracked in this abstraction; vars(Π) is
the set of variables appearing in the tracked predicates. The expression function of an
abstract state is the combination of FOL predicates that describes the state. The transfer
function returns the strongest combination of predicates in the precision that is entailed
by the source state and the operation.

2.3.2 Counterexample-Guided Abstraction Refinement

Counterexample-Guided Abstraction Refinement (CEGAR) [34] is an abstraction-based
model checking algorithm. CEGAR starts from a coarse abstraction and iteratively refines
the abstraction until it can prove or disprove the analyzed property. The core of the
algorithm is the CEGAR-loop (see Figure 2.2) which consists of the abstractor and the
refiner. The abstractor builds the abstract state space (an abstract reachability graph,
ARG [24]) over an abstract domain with a given precision. Since the abstract state space
is an over-approximation of the original concrete state space, if no abstract error state is
reachable, the concrete model is also safe. On the other hand, when an abstract error is
reachable, the refiner checks whether it is a feasible or a spurious abstract counterexample.
The counterexample is an alternating sequence of abstract states and actions from the
initial abstract state to an abstract error state. The refiner checks whether this trace is
feasible or not, that is, whether there is a concrete variable assignment for each state of
the trace that does not contradict the abstract state expressions and the actions of the
trace. If feasible, the model is unsafe. If spurious, the precision is refined. The abstract
state space is built with this refined precision in the next iteration.

Example 2. Consider the example from Figure 2.3. We have the abstract state space
S from Figure 2.3a with the abstract error state s3. The abstractor finds the abstract
counterexample highlighted in Figure 2.3a. This counterexample leads from the abstract
initial state s0 to the abstract error state s3 in the abstract state space S: s0 −→ s2 −→ s1 −→
s3. The abstract state space is an over-approximation of the concrete state space. So the
refiner has to decide whether the abstract counterexample is feasible or spurious.

13

a1

a3

a2

a4

(a) Abstract state space S with an abstract counterexample

a1 a2

a3 a4

s2

s1 s3

s4

s5

s6 s7

s8

(b) Feasible counterexample in S1

a1 a2

a3 a4

s2

s1 s3

s4

s5

s6 s7

s8

(c) Spurious counterexample in S2

Figure 2.3: CEGAR counterexamples

First, let us assume that the concrete state space abstracted by S is S1 from Figure 2.3b.
In this case, the counterexample is feasible since we can find a transition sequence for the
abstract counterexample in the concrete state space starting from the initial concrete state
c0 leading to the error state c7: c0 −→ c4 −→ c3 −→ c7 with c0 |= s0, c4 |= s2, c3 |= s1, and
c7 |= s3.

However, C2 from Figure 2.3c can also be the concrete state space whose abstraction is S.
The counterexample is spurious now, as there is no trace from c0 to c7 in S2.

14

Chapter 3

Abstraction-Based Partial Order
Reduction

Partial order reduction (POR) is an effective technique for handling concurrency, and
abstraction is an efficient approach to handling data in model checking. I present a
general theoretical framework for combining these model checking paradigms where the
advantages of using the two techniques simultaneously are also exploited. I also present a
concrete verification algorithm using POR and abstraction together as a case study of my
general approach. The novelty of my method lies in the general formulation of POR used
during abstract state space exploration. Existing approaches combining these techniques
are typically specific to POR or abstraction algorithms [33, 85, 70, 79]. A general approach
for combining abstraction and commutativity checking is proposed by Farzan et al. [45].
However, that paper does not investigate POR algorithms, simply the general properties of
abstract commutativity relations. My work shows how the idea of abstract commutativity
applies generally to POR in abstract state space exploration algorithms.
The core concept of POR is to identify equivalent executions [51]. Then, it is enough to
check a single representative from each equivalence class. Identifying equivalent interleav-
ings is based on the interaction of threads: dependency is defined between the interacting
program operations. Traditionally, a syntactic over-approximation is used as a method of
calculating dependency for partial order reduction: two actions are independent if they do
not use common shared variables (and the two actions belong to different processes) [51].
For example, let us have a state in the (concrete) state space of the program with two
enabled actions from different threads: x++ and y++. No matter, in what order we explore
the two actions (x++, y++ or y++, x++), we will reach the same state since the actions
operate on different variables. So we can skip the exploration of one of the two paths.
When it comes to combining POR with abstraction, we face the problem that traditional
approaches may calculate invalid dependency relations: it is not trivial to apply POR in
an abstract state space where the values of variables are not tracked explicitly [33, 79].
Example 3 shows a situation where syntactically independent actions are not commutative
in an abstract state space.

Example 3. Assume that we have an abstraction where we only track the predicates x > y
and x > y + 1 about our variables. Figure 3.1 demonstrates that two actions that are
independent in the traditional sense (no shared variable) may be dependent in the abstract
state space. Actions x++ and y++ are dependent since they are not commutative in the
abstract state space due to the difference in the labeling of the abstract states. Later,
Figure 3.4 shows a case where actions with different variables can even disable each other.

15

y++

x > y ∧ x > y + 1

x++ y++

x > y

x > y

x++

true

true

Figure 3.1: Syntactically independent actions that are not commutative in the abstract
state space

Even though the syntactic over-approximation of dependency is not a valid dependency
relation in the abstract state space, I show that using it for partial order reduction will
always find an error state in the abstract state space if an error is reachable in the concrete
state space. Furthermore, I restrict the calculation of dependency, to consider fewer actions
dependent in an abstract state space. Intuitively, if the source of dependency between two
actions is ignored due to abstraction, it is needless to consider these actions dependent.
That is, two actions using the same shared variable are only considered dependent if
we track any information about any of their shared variables in the abstraction. As a
basic example, take the actions x = 0 and x = 1. Existing methods consider these actions
dependent since they both write x. However, my approach allows considering these actions
independent when we do not track any information about x in the abstraction.
To further motivate my approach, it is possible to achieve exponential gains in terms of
the number of explored interleavings by using my abstraction-based algorithm for partial
order reduction. Consider the example from Figure 3.2 with 2N + 1 processes. The safety
of the program can be proven with abstraction by only tracking the predicates z mod 2 = 0
and x = 0 about our variables. As z mod 2 = 0 is an invariant of the loop of p0, x will
get the value 0 which satisfies the assertion. To prove this, traditional methods would
explore all interleavings of instructions using y since these actions would be considered
dependent due to y: processes p1 − p2N have 2N ! interleavings (potentially resulting in
different values of y) not considering the loop of p0; together there are even more possible
interleavings. However, my algorithm notices that we do not track any information about
y, so it will not consider the actions using y dependent: this way, my method explores a
single execution and guarantees the safety of the program.
Summarizing my contributions: I introduce a general abstraction-based partial order re-
duction approach which is independent of both the underlying POR algorithm and the
abstract domain and which uses the information coming from the abstraction to boost
partial order reduction. By proving the correctness of using the new abstraction-based
dependency relation, I also prove that using the traditional dependency relation for partial
order reduction in an abstract state space is correct as well (which is also a non-trivial
statement as testified by Example 3). I have implemented and evaluated my method in
the abstraction-based verification tool Theta[83].
The organization of this chapter is as follows. First, Section 3.1 introduces the theoret-
ical background. Section 3.2 presents the novel general approach to combine POR and
abstraction in an abstract state space exploration. Section 3.3 demonstrates an algorithm
implementing abstraction-based POR. Finally, I evaluate the approach in Section 3.4 using
the algorithm introduced in Section 3.3.

16

initially: x:=y:=z:=0

Process p0

repeat N times:
z := z+2*y

if z mod 2 = 0:
x := 0

else:
x := 1

Processes p1, ..., pN

y := y+1

Processes
pN+1, ..., p2N

y := y*y

finally: assert(x*y=0)

Figure 3.2: Motivational example for possible exponential gain

3.1 Preliminaries

We need to discuss some further preliminaries before we can dive into the contributions
of this chapter. First, I introduce some extra notation used in this chapter, then I present
the basic concept of partial order reduction.
For the states s1, s2, and the set of variables U ⊆ V , I write s1 = s2 on U to denote that
s1(v) = s2(v) for each v ∈ U . The notation w\t means the transition sequence obtained
from w by removing the first occurrence of t from w.
A transition system is action-deterministic if |I| ≤ 1 and |α(s)| ≤ 1 for any state s ∈ S
and action α ∈ A [13]. The state space of a program is not action-deterministic due to
non-deterministic assignments, and uninitialized variables. However, unknown is a possi-
ble value for variables when using abstraction (see details in Section 2.3): an uninitialized
variable or a variable after a non-deterministic assignment gets the specific value unknown.
This way, the state space becomes action-deterministic. In an action-deterministic transi-
tion system, I use α(s) for the single state s′ with (s, α, s′) ∈ T . Partial order reduction al-
gorithms are classically formulated for action-deterministic transition systems [46, 13, 12].
In some cases, instead of using the term action-deterministic, it is said that control non-
determinism is allowed [3]. Some works investigate partial order reduction algorithms
in non-deterministic state spaces, also considering types of abstraction introducing non-
determinism [58]. In those settings, partial order reduction algorithms need to satisfy
different properties. However, this research direction is out of this work’s scope, so I
assume that the abstract state space is action-deterministic.
A further assumption that we need for the algorithms in this chapter is that the state space
is finite. For data variables, this is not a real restriction in most cases, as the domain
of program variables are typically bounded (e.g., 32-bit integers in most languages) or
abstraction can take care of a finite domain (e.g., the size of the domains of each predicate
in predicate abstraction is 2). The restriction concerns concurrent programs where new
threads are created dynamically in an infinite loop. Naturally, in real scenarios, we do
not need an unbounded number of threads (and in fact, the limitations of the execution
environment also limits the possible number of running threads at the same time), so this
is also only a theoretical limitation. Besides, it is a common assumption to take in the
papers presenting partial order reduction algorithms [2, 84, 51].

17

3.1.1 Partial Order Reduction

Partial Order Reduction (POR) is a well-known technique for avoiding the exploration of
redundant thread interleavings in the verification of a multi-threaded program [51]. Its
key idea is to define an equivalence relation on traces and explore a single representative
(or as few as possible) from each equivalence class. Traces are defined to be equivalent
if they can be obtained from each other by successively swapping adjacent independent
actions. An equivalence class is called a Mazurkiewicz trace [73]. Intuitively, if adjacent
independent actions are swapped, the outcome will remain the same: by exploring a single
trace from each equivalence class, we still cover all behaviors of the system. For the above
interpretation of equivalence, we need a definition of independence.
Dependency plays a key role in partial order reduction. The general formulation of de-
pendency is as follows [51]:

Definition 4 (Valid Dependency Relation). Let TS = (S,A, T, I) be an action-
deterministic transition system. Let D ⊆ A × A be a binary, reflexive, and symmetric
relation. D is a valid dependency relation if for all α, β ∈ A, (α, β) /∈ D (α and β are
independent) implies that the following two conditions hold for all s ∈ S:

• if α ∈ enabled(s), then β ∈ enabled(s) iff β ∈ enabled(α(s)), and

• if α, β ∈ enabled(s), then β(α(s)) = α(β(s)).

α and β are dependent if they are not independent. �

The first condition means that independent actions can neither disable nor enable each
other. The second property states that independent actions commute. Sometimes, de-
pendency of transitions is used in this paper: by the dependency of transitions, I mean
dependency of their actions. Note that I will introduce relations in this work that are
not valid dependency relations; however, for semantic reasons, I will refer to them as
dependency relations - without the label valid.
Since the goal of POR is to avoid exploring multiple traces leading to the same state,
the definition cannot be used directly for determining dependency (two actions should be
explored in both orders to decide whether they commute). An appropriate approximation
of the dependency relation in an abstract state space is a main contribution of this work.
Many algorithms have been introduced for partial order reduction in the last decades. My
abstraction-based extension is orthogonal to the underlying POR algorithm. In this work,
I build my presentation on the concept of source sets which is the core of optimal dynamic
partial order reduction [1].

3.2 Abstraction-Aware Partial Order Reduction

This chapter describes how partial order reduction can be integrated into an abstraction-
based model checking algorithm. Since the core concept of the approach is to consider extra
information about the used abstraction when applying partial order reduction, I call the
algorithm abstraction-aware partial order reduction. My approach is independent of the
underlying POR algorithm as well as the applied abstract domain. The only requirements
are that CFA locations of all processes must be explicitly tracked, and the abstract state
space must be action-deterministic, that is the transfer function must return a single
successor for each state and operation.

18

3.2.1 Dependency relations

In my algorithms, different dependency relations are used for partial order reduction. It is
important to note that these are not necessarily valid dependency relations in all transition
systems. First, I define the syntactic dependency relation.

3.2.1.1 Syntactic Dependency Relation

A syntactic dependency relation denoted by DS is the classically used syntactic over-
approximation of dependency[51]. That is, two actions (α, β) ∈ DS (α and β are depen-
dent) iff:

• α and β are actions of the same process, or

• vars(α) ∩ vars(β) ̸= ∅, and at least one variable in vars(α) ∩ vars(β) is written by
α or β.

The syntactic dependency relation is a valid dependency relation in the concrete state
space [51]. However, in general, it is not a valid dependency relation in the abstract state
space; see the motivating example Example 3.

3.2.1.2 Abstraction-Based Dependency Relation

I introduce a new dependency relation for abstract state spaces (similar conditions are
proposed in [45]). An abstraction-based dependency relation DΠ is also a syntactic ap-
proximation. However, it is defined in an abstraction with respect to the precision of the
abstraction.

Definition 5. Let us have an abstract state space built with precision Π, and let DΠ
be a binary, reflexive, and symmetric relation. Two actions (α, β) ∈ DΠ (α and β are
dependent with respect to precision Π) iff:

• α and β are actions of the same process, or

• vars(α) ∩ vars(β) ∩ vars(Π) ̸= ∅, and at least one variable in vars(α) ∩ vars(β) ∩
vars(Π) is written by α or β. �

In other words, the second condition means that α and β may still be independent if
they use common variables. They are only dependent when the abstraction stores any
information about any variable that they both access. Note that DΠ is a subset of the
syntactic dependency relation DS for any precision Π: the first condition is the same for
both relations, and the second condition of DΠ implies the second condition of DS . As a
consequence, DΠ is not a valid dependency relation in the abstract state space either (same
counterexample from Example 3). Furthermore, DΠ is not necessarily a valid dependency
relation in the concrete state space.

Example 4. To illustrate the difference between the syntactic and the abstraction-based
dependency relation, consider the actions x=1 and [x>0]. They are dependent based on the
syntactic dependency relation since they both use the variable x, and the first action writes
it. For the abstraction-based dependency relation, we need an abstraction with a precision.
First, let the precision be Π = {x < y, z = 1}: then the two actions are dependent in

19

S0 c0
S1

c'1

α2
c1

α1
Sk

αk
c'k ck

. . .

S0 S1
α2α1 Sk

αk. . .

Figure 3.3: Abstract trace with a partial concretization

DΠ since we have information about x in this abstraction. However, when the precision
is Π = {0 < y, z = 1}, then our actions are independent in DΠ as the value of x is
completely ignored in this abstraction.

As we have seen, the introduced relations are not valid dependency relations. However,
I show in the next sections that using these relations (DΠ in particular) for partial order
reduction in an abstract state space with precision Π, feasible errors are still found.

3.2.2 Partial Feasibility

First, I generalize the concept of abstract trace feasibility by introducing partial feasibility.
Intuitively, a partial concretization of an abstract trace is a partial variable assignment for
each abstract state of the trace with only a subset of variables assigned so that the partial
variable assignment does not contradict the abstract state expressions. The motivation
for introducing partial feasibility is that variables ignored in the abstraction may spoil
feasibility.

Example 5. Let us have a program with the following three independent actions (with the
variables being initially zero):

α: x=1 β: [y=0] reach error γ: [z=1] z=0

Clearly, γ is not enabled in the initial concrete state due to z being zero. Let us have the
abstraction where only the variables x and y are tracked explicitly. Now, γ is enabled in
the abstract initial state as we have no information about z. A partial order reduction
algorithm may explore the trace w = γ.α.β and no other traces as all actions are indepen-
dent. Even though w is not feasible, it will be enough for us in a sense that is formalized
by partial feasibility.

Definition 6. An abstract trace w = α1...αk from an abstract state s0 (s0
α1−→ ...

αk−→ sk)
is partially feasible for the set of variables P ⊆ V if there are concrete states c0, ..., ck such
that:

• ci |= si for each 0 ≤ i ≤ k, and

• for each 0 ≤ i < k, ∃c′
i+1 such that ci

αi+1−−−→ c′
i+1, c′

i+1(p) = ci+1(p) for each process
p, and c′

i+1 = ci+1 on P .

We refer to c0, ..., ck as a partial concretization of w for P . �

20

x + y ≤ 2 ∧ ¬ y ≥ 2[x ≥ 2]

[y ≥ 2]

x + y ≤ 2

x + y ≤ 2 ∧ y ≥ 2

x = 0
true

y = 2 - x
true

Figure 3.4: Example of a partially infeasible abstract trace

If w consists of a single action α, I say that α is a partially feasible action from the abstract
state. Note that w being partially feasible for V means that w is feasible. The connection
between feasibility and partial feasibility is straightforward: if w is not partially feasible
for a P ⊆ V , then w is not feasible; and if w is feasible, then w is partially feasible for any
P ⊆ V . In practice, I will use P = vars(Π) for a precision Π: thus, partial feasibility will
only depend on variables that we have information about in the current abstraction.

Example 6. Figure 3.3 illustrates partial feasibility: we have the abstract trace α1...αk

from the abstract state s0 and it has a partial concretization c0, ..., ck (for the sake of
simplicity, I omitted the values of variables from the figure).

We can see an example of an abstract trace that is not partially feasible for {x, y} in
Figure 3.4. The figure shows an abstract state space built with a precision consisting of
the predicates x+ y ≤ 2 and y ≥ 2. The state expression of the initial state is true, and it
remains true even after executing x = 0 since none of the predicates or their negated form
is a consequence of this action. However, y = 2− x implies x+ y ≤ 2. It still allows both
[x ≥ 2] and [y ≥ 2] to be enabled. Even though x = 0, y = 2 − x, [x ≥ 2] is an abstract
trace from the initial state, it is trivially not partially feasible since there is no possible
partial variable assignment for vars(Π) = {x, y} meeting the requirements of Definition 6
due to x. Also note that the actions [x ≥ 2] and [y ≥ 2] (belonging to different processes)
disable each other even though they are independent based on the syntactic dependency
relation.

The following lemma states that if we have a sequence of concrete states c0, ..., ck that
satisfy the conditions in Definition 6, then there is indeed an abstract trace in the abstract
state space whose partial concretization is the sequence c0, ..., ck.

Lemma 1. Let Π be the precision of the abstraction and P = vars(Π); and c0, ..., ck be
concrete states such that for each 0 ≤ i < k, ∃c′

i+1 with ci
αi+1−−−→ c′

i+1, c′
i+1(p) = ci+1(p) for

each process p, and c′
i+1 = ci+1 on P . Let s0 be any abstract state with c0 |= s0. Then:

α1...αk is an abstract trace that exists in the abstract state space from s0. �

Proof. The abstract state space being an over-approximation of the concrete state space
means that if there is a transition ci

αi+1−−−→ c′
i+1 in the concrete state space, then there is

a transition si
αi+1−−−→ si+1 in the abstract state space where ci |= si and c′

i+1 |= si+1. The
expression function of abstract states only uses the variables in the precision. Thus, from
c′

i+1(p) = ci+1(p) for each process p, and c′
i+1 = ci+1 on P , it follows that c′

i+1 |= si+1
implies that ci+1 |= si+1. Now, with induction for i from 0 to k − 1, we get that α1...αk

is an abstract trace in the abstract state space from s0. □

3.2.3 Relaxed Partial Order Representation

We can connect the partial order representation defined by a dependency relation with
partial feasibility. Let w1 ≈Π w2 denote that abstract traces w1 and w2 can be transformed

21

into each other by successively swapping adjacent actions that are independent in DΠ.
Thus, the relation ≈Π defines equivalence classes (Mazurkiewicz traces [73]) on abstract
traces. The following theorem states that either all abstract traces are partially feasible
in such an equivalence class or none.

Theorem 1. Let us have an abstract state space S built with precision Π, let s ∈ S be
an abstract state, w1 and w2 be transition sequences with w1 ≈Π w2, and P = vars(Π).
Then, w1 is a partially feasible abstract trace from s for P iff w2 is a partially feasible
abstract trace from s for P . �

Proof. I prove that swapping two adjacent actions independent based on DΠ in a partially
feasible abstract trace w will result in an abstract trace w′ that is also partially feasible.
The case is symmetric for w1 and w2: I can assume that w1 is partially feasible. Since
w1 ≈Π w2 means that the partially feasible abstract trace w1 can be transformed into w2
by successively swapping adjacent independent actions, and partial feasibility is preserved
in each step, it follows that w2 is partially feasible.

Let w = q.α.β.r for some traces q and r (s q−→ sq
α−→ sα

β−→ sαβ
r−→ sw) and w′ = q.β.α.r

from state s with w being partially feasible from s for P , and (α, β) /∈ DΠ. I check that
w′ is also partially feasible from s for P . Let A = vars(α), and B = vars(β).
Since w is partially feasible, we have a partial concretization c, ..., cq, cα, cαβ, ..., cw of w
with cq |= sq, cα |= sα, cαβ |= sαβ. Ignoring the end of w, we get that c, ..., cq, cα, cαβ

is a partial concretization of q.α.β for P . My goal is to show that there is a partial
concretization c, ..., c′

q, cβ, cβα of q.β.α such that cαβ = cβα.
Throughout the proof, I will compare the values of variables in different concrete states.
For this, as a reference, let us make the following observations:

Observation 1 Since (α, β) /∈ DΠ, A ∩ B ∩ P = ∅ or neither α nor β modifies any
variable in A ∩ B ∩ P . In both cases, c1(v) = c2(v) for each variable v ∈ A ∩ B ∩ P for
any concrete states c1, c2 with c1

α−→ c2 or c1
β−→ c2.

Observation 2 The action α can only change the values of variables in A, so if we have
concrete states c1 and c2 with c1

α−→ c2, then c1 = c2 on A. Similarly for β.

In Figure 3.5, I visualize the concrete and abstract states appearing in the proof. The
variable values are represented by Venn diagrams in each concrete state. Sets with the same
colors (and numbers) indicate that variables belonging to them have the same values. The
colored numbers in the text should be interpreted such that the set of variables mentioned
just before the colored numbers is the union of sets represented by the numbers.
Using Definition 6 of partial feasibility for the partial concretization c, ..., cq, cα, cαβ: there
is a concrete state c′

α such that cq
α−→ c′

α and c′
α = cα on P 1 2 4 10 ; similarly, there

is a concrete state c′
αβ such that cα

β−→ c′
αβ and c′

αβ = cαβ on P 1 2 10 13 .

Based on Observation 2 for α, cq = c′
α on A 0 2 4 7 . Putting it together, cq = cα

on P \ A 2 4 . Let c′
q such that c′

q(p) = cq(p) for each process p1, and c′
q = cq on

B ∪ P 0 1 2 3 4 5 . Also, let c′
q = cα on B \ P 8 9 . Defining c′

q this way, with
Observation 1 we can conclude that c′

q = cα on B 1 4 8 9 .
1For better readability, I will omit CFA locations from now on. Based on the notations, all states with

the same name differing only in an apostrophe have the same CFA locations for each process.

22

sq

cq P

BA

c'qP

BA

2 2

sα

cα P

BA

c'αV V P

BA

sβ

cβ P

BA

c'βP

BA

sαβ

V Vcαβ P

BA

c'αβP

BA

cβα P

BA

α

αβ

β

22 2 2

22 2

3 3
1 1

1 1 1 1

1 1 1

33

4 4

44

5 5

5 5

6

6

7

7

8

8

9

9

10 10

11 11

11

10 10 10

12

13 13

1313 13

14 14

1416 16

15

1517 1718 18

q

r r

0 0

0 0 0 0

0

V V

V V

V

sβα

c'βα
19 19

P

BA

2

1
3

5

13

1415

0
V

P

BA

2

1
11

13

1412

0
V

10

Figure 3.5: Variables of states in the proof of Theorem 1.

From partial feasibility we know that β is enabled in cα. The guard condition of β only
depends on the values of variables in B. Therefore, by the fact that c′

q = cα on B, β is
enabled in c′

q: there is a concrete state c′
β with c′

q
β−→ c′

β.

Let cβ be a concrete state with cβ = c′
β on A∪P 0 1 2 3 13 14 . Also, let cβ = cq on

A\P 5 6 . Using the definitions of cβ and c′
q, and Observation 2 for β: cβ = c′

β = c′
q = cq

on (A∩ P) \B 3 . By the definition of cβ and Observation 1, cβ = cq on A 1 3 5 6 .
This way, the fact that α ∈ enabled(cq) implies that α is enabled in cβ.

Now let c′
βα be such that cβ

α−→ c′
βα. Let cβα be such that cβα = c′

βα on P 1 2 10 13 .
Also, let cβα = cαβ on P 16 17 18 19 . I show that cβα = cαβ even on P 1 2 10 13 .

Again, consider that cq = cβ on A 1 3 5 6 , thus α from cq and cβ will result in the
same new values for v ∈ A: c′

α = c′
βα on A 1 10 11 12 . From Observation 2 for β,

and the definitions of the following states, cαβ = c′
αβ = cα = c′

α = c′
βα = cβα on A ∩ P

1 10 . Symmetrically, cαβ = c′
αβ = c′

β = cβ = c′
βα = cβα on B ∩ P 1 13 . Finally,

cβα = cq = cαβ on P \ (A∪B), since neither α, β, nor the definition of any concrete state
changed the value of such a variable v 2 .
Thus, cβα = cαβ on V (all variables). It can be easily seen that process locations are the
same in cβα and cαβ, so cβα = cαβ. Based on the above definitions of cβ and cβα, the
above proven property that cβα = cαβ, and using Lemma 1 for the sequence of concrete

23

states c, ..., cq, cβ, cβα, ..., cw, we get that w′ = q.β.α.r is a partially feasible abstract trace
for P from the abstract state s which proves the theorem. □

Also, take the following lemma which states that a partially feasible trace w can be ex-
tended to a partially feasible trace with an action that is enabled in the first concrete state
of any partial concretization of w; it will be useful later.

Lemma 2. Let Π be the precision of the abstraction, s be an abstract state, and let the
trace w = w1...wn be a partially feasible trace from s for vars(Π). Let c0, ..., cn be a
partial concretization of w from s, and let α ∈ enabled(c0) such that (α,wi) /∈ DΠ for each
1 ≤ i ≤ n. Then, w.α is also a partially feasible trace from s for vars(Π). �

Proof. Throughout the proof, 1 ≤ i ≤ n and 0 ≤ j ≤ n. Let W = ⋃
i vars(wi), that is,

the variables used by any action of w; and let cα = α(c0).
I define the concrete states c′

j such that c′
j = cα on vars(α) \ W , and c′

j(v) = cj(v)
otherwise. As for the CFA locations, c′

j(p) = cj(p) for each process p ̸= pα, and c′
j(pα) =

cα(pα).
It can be easily checked that the conditions of Lemma 1 are met by the concrete states
c0, c

′
0, ..., c

′
n. For c0 and c′

0, there is cα with c0
α−→ cα, and cα = c′

0 on vars(Π) (see the
definitions of these states and Observation 1 for α and wi). From c′

0, the conditions are
met because c0, ..., cn is a partial concretization of w for vars(Π), and c′

j = cj on W , and
c′

j(pwi) = cj(pwi) for each process pwi (as pα ̸= pwi based on (α,wi) /∈ DΠ).
Then, by Lemma 1, the trace α.w is partially feasible from s for vars(Π) with the partial
concretization c0, c

′
0, ..., c

′
n. Since (α,wi) /∈ DΠ, α.w ≈Π w.α which implies by Theorem 1

that w.α is partially feasible from s for vars(Π). □

So far, I have defined equivalence classes on abstract traces with the relation DΠ. Evi-
dently, if a partially feasible abstract trace reaches an error state, then all other traces in
its equivalence class reach an error state. It comes from the fact that error states are de-
fined as states where any process is in an error location. Since all traces of an equivalence
class contain the same actions (cf. they can be obtained from each other by successively
swapping certain actions), if an action leads to an error location, it will reach the error in
all traces regardless of the order of actions.

3.2.4 Source Sets for Abstraction-Aware Partial Order Reduction

We need an algorithm that explores only a single trace (or as few as possible) per equiv-
alence class. Any POR algorithm could be chosen from the literature. Since I strive for
generality, I use the concept of source sets [3] as necessary conditions on the correctness of
a POR algorithm can be formulated with source sets [2]. I slightly modify its formulation
to demonstrate that using the abstraction-based (or the traditional) dependency relation
for partial order reduction in the abstract state space yields correct results.
Using the relation ≈Π on abstract traces, I relax the definition of weak initials and source
sets from [3]:

Definition 7 (Weak Initials). Let s be an abstract state, Π be the precision of the
abstraction, and w be a transition sequence from s such that w is partially feasible from s
for vars(Π). For w, the set WI Π

s (w) of weak initials in s is a set of actions: α ∈WI Π
s (w)

iff there are transition sequences v1 and v2 such that α.v1 ≈Π w.v2, and w.v2 is partially
feasible from s for vars(Π). �

24

Definition 8 (Source Sets). Let s be a state, and W be a set of transition sequences
such that w is an abstract trace from s for each w ∈W . A set P ⊆ enabled(s) is a source
set for W in s if for each transition sequence w ∈W , WI Π

s (w) ∩ P ̸= ∅. �

For abstract traces w and w′ from the abstract state s, I use w ⊑s w
′ to denote that

w.v ≈Π w′ for some transition sequence v.

Example 7. To demonstrate weak initials and source sets, take the program of Figure 3.2,
and let s0 be the abstract initial state. Consider two precisions Π1 and Π2. In the first
case, let us explicitly track all variables of the program, so vars(Π1) = {x, y, z}. In the
other case, let us only track the predicates z mod 2 = 0 and x = 0, so vars(Π2) = {x, z}.
Let w1 be the following trace of the program: first, the actions of processes p1, ..., p2N

in order (actions writing y), then the actions of p0 (with first branch of the if). Let w2
another trace, where the actions of p0 come first, and then the actions of processes p1, ...,
p2N . Evidently, both w1 and w2 are feasible traces from s0 in both abstract state spaces
(explored with precision Π1 and Π2).

In the first case, the weak initials WI Π1
s0 (w1) only contains y := y + 1 (of p1). To see

this, note that no action α of the program is independent in DΠ1 with all preceding actions
of α in w1 due to y being used by the first actions of all threads: it is impossible to
consecutively swap adjacent independent elements to obtain another trace w′

1 starting with
α (∄w′

1 such that w′
1 starts with α and w′

1 ≈Π1 w1). Similarly, WI Π1
s0 (w2) = {z := z+2∗y}.

Since w1 and w2 are both transition sequences from s0, neither P1 = {y := y + 1} nor
P2 = {z := z+2∗y} is a source set for all transition sequences in s0, since P1∩WI Π1

s0 (w2) =
P2 ∩WI Π1

s0 (w1) = ∅. In fact, the only source set in s0 is enabled(s0) itself.

In the second case, actions using y are not dependent in DΠ2. So WI Π2
s0 (w1) and WI Π2

s0 (w2)
both contain all enabled actions in s0 (the first actions of all threads can be swapped with
independent swaps). In fact, WI Π2

s0 (w) = enabled(s0) for any trace w starting from s0.
Therefore, any action α ∈ enabled(s0) forms a source set alone since α is part of the weak
initials of all traces starting from s0: e.g., {z := z + 2 ∗ y} is a source set in s0.

We can use this relaxed definition of source sets to formulate the correctness of abstraction-
aware partial order reduction. The goal is to reduce the size of the abstract state space
by exploring only a subset of enabled actions from each state. Generally, it is required
from such a state space reduction that if an error state can be reached in the original state
space, then an error state is also reachable in the reduced state space; this is to ensure
that reachability analysis performed in the reduced and the original abstract state space
yield equivalent results.
However, in our context of abstraction, it is enough to have an error state in the reduced
abstract state space if there is a feasible trace from the initial abstract state to an abstract
error state in the original abstract state space. That is, if abstract error states can only
be reached with spurious traces (meaning that there is no error state in the concrete state
space), there is no need to include an error state in the reduced state space.

Lemma 3. Let s be an abstract state, Π be the precision of the abstraction, and w be
a trace from s such that w is partially feasible from s for vars(Π). If α ∈ WI Π

s (w) and
α /∈ w, then

1. w.α is also partially feasible from s for vars(Π), and

2. α.w ≈Π w.α. �

25

Proof. From Definition 7 of weak initials, there are transition sequences v1 and v2 such
that α.v1 ≈Π w.v2. This means that w.v2 can be obtained from α.v1 by successively
swapping adjacent independent actions. Since α /∈ w, α ∈ v2 necessarily. Also, for any
action β ∈ v1 but β /∈ w, β ∈ v2. Thus, any β /∈ w (including α) preceding any action
γ ∈ w in α.v1 must be independent with such γ actions: (β, γ) /∈ DΠ.
So we can first move all such β after w by successive independent swapping steps without
swapping α with any other such β. Thus, we get the transition sequence w.α.v′

2 such that
α.v1 ≈Π w.α.v′

2 ≈Π w.v2. Since w.v2 is partially feasible from s based on the definition
of weak initials, w.α.v′

2 is partially feasible as well by Theorem 1. Thus, its prefix w.α is
partially feasible from s which proves the first statement.
For the second statement, take again that (α, γ) /∈ DΠ for each γ ∈ w since α precedes
every other action in α.v1. This, by definition of the relation ≈Π means that α.w ≈Π w.α.□

Let WΠ(s) denote the set of partially feasible traces from an abstract state s for vars(Π)
in an abstract state space with precision Π. The following theorem (a modified version of
the corresponding theorem in [2]) guarantees the correctness of a partial order reduction
algorithm with certain conditions.

Theorem 2. Let S be the original abstract state space built with precision Π, and SR

be the reduced abstract state space obtained from S by restricting the set of actions that
are explored from each state. If the following two conditions are satisfied:

1. for each state s in SR, the set of explored actions is a source set for WΠ(s) in s,

2. for each cycle in SR, if an action α is enabled in all states of the cycle, then α is
explored from some state of the cycle,

then for each state s in SR and abstract trace w from s in S such that w is partially
feasible for vars(Π), there is a transition sequence w′ in SR such that w ⊑s w

′.2 �

The proof proceeds similarly to the proof of the original theorem in [2] though some
statements need more thorough justification.

Proof. I prove the theorem by induction on the length of w. The base case with |w| = 0
is trivial. For the inductive step, let us have the trace w ∈WΠ(s): by definition of WΠ(s),
w is partially feasible from s. By condition (1), some action α ∈WI Π

s (w) is explored from
s in SR. We have two cases:

1. α ∈ w
By definition, α ∈ WI Π

s (w) means that α.(w\α) ≈Π w (otherwise, α.v1 could not
be transformed into w.v2 by successive independent swapping steps when applying
Definition 7 for α and w). This implies together with the assumption that w is
partially feasible from s that α.(w\α) is also a partially feasible abstract trace from
s based on Theorem 1. As a consequence, (w\α) is a partially feasible abstract trace
for vars(Π) from α(s).
From the induction hypothesis for state α(s) and the partially feasible trace (w\α)
from α(s), we know that the reduced state space SR contains a trace w′′ with
(w\α) ⊑α(s) w

′′. This way, SR also contains the trace α.w′′ from s. We now have
2Note that w′ is not guaranteed to be partially feasible from s.

26

that α.(w\α) ⊑s α.w
′′. From this, along with α.(w\α) ≈Π w, we can easily infer

from the definitions of ≈Π and ⊑s that w ⊑s α.w
′′, so we can take α.w′′ as w′ in the

theorem.

2. α /∈ w
Let α1 = α. Then, using Lemma 3, α1 ∈ WI Π

s (w), α1 /∈ w, and the assumption
about the partial feasibility of w imply that w.α1 is a partially feasible trace from
s, and α1.w ≈Π w.α1. This, together with Theorem 1 implies that α1.w is also a
partially feasible trace from s. Thus, w is a partially feasible trace from α1(s).
Again, by condition (1), some action α2 ∈WI Π

α1(s)(w) is explored from α1(s) in SR.
Continuing in this way, we have two cases:

• There is a sequence of actions α1, ..., αk such that for each 1 ≤ i ≤ k − 1, w
is a partially feasible trace from αi−1(...(α1(s))) with αi /∈ w, and αk ∈ w,
and for each 1 ≤ i ≤ k, αi ∈ WI Π

αi−1(...(α1(s)))(w). Now, we can extend the
reasoning in case 1 of the proof (with αk being in a similar position as α in
case 1): we have a trace w′′ such that SR contains the trace α1...αk.w

′′ from
s such that α1...αk.(w\αk) ⊑s α1...αk.w

′′. Knowing that α1...αk.(w\αk) ≈Π

αk.(w\αk).α1...αk−1 implies αk.(w\αk) ⊑s α1...αk.w
′′. Since αk.(w\αk) ≈Π w,

we have that w ⊑s α1...αk.w
′′, so we can take α1...αk.w

′′ as w′ in the theorem.
• There is an unbounded sequence of actions α1, α2, ... such that for each i =

1, 2, ..., w is a partially feasible trace from αi−1(...(α1(s))), αi /∈ w but αi ∈
WI Π

αi−1(...(α1(s)))(w). Consequently, there must be a loop in this unbounded
sequence of actions (since the state space if finite) with the first action w1 of w
enabled in all states of the loop. By condition (2), w1 must be explored from
at least one state of the loop, and we are back in case 1 of the proof. □

If an error state is reachable in the concrete state space from the initial state with trace
w, w is also an abstract trace from the abstract initial state s0 leading to an abstract
error state, since the abstract state space is an over-approximation of the concrete state
space. As w is a feasible trace, it is also partially feasible for any subset of variables. As
a consequence, Theorem 2 can be used for w: there is an abstract trace w′ in the reduced
abstract state space with w ⊑s0 w

′. Since error locations are sinks in the CFA, any state
reachable from an error state is also an error state, so w′ also reaches an abstract error
state. Note that this w′ is not necessarily feasible, only partially feasible for the variables
in the precision. However, in such a case, the refinement step of the CEGAR algorithm
will realize that w′ is not feasible, and it will refine the abstraction.

3.3 Static Abstraction-Aware Partial Order Reduction Al-
gorithm

Several algorithms have been presented in the literature for partial order reduction [51, 46,
1]. There are two main approaches: static and dynamic partial order reduction [13]. In
the static version, the model (i.e., the CFA of the program) is analyzed, and the reduced
state space is generated based on this static analysis. The dynamic approach constructs
the reduced state space during the model checking. Although abstraction-aware partial
order reduction uses on-the-fly information about the current abstraction, its core partial
order reduction algorithm can be implemented in a static fashion.

27

Algorithm 1: Calculating a Source Set from s with Π
Input: s,Π
Output: P /* Source set in s */

1 P ← {α} for some α ∈ enabled(s)
2 while any new item is added to P do
3 P ← P ∪ {α : α ∈ enabled(s) \ P, ∃β ∈ future_actions(s, α),∃γ ∈

P with (β, γ) ∈ DΠ}
4 end

Though my abstraction-aware extension can be applied to any partial order reduction
algorithm, dynamic approaches tend to have much more complex formulations [2], so I
will restrict myself to the presentation of a static approach in this paper. My static source
set-based abstraction-aware partial order reduction algorithm is similar to Overman’s al-
gorithm [75, 51]. Before presenting the algorithm that calculates source sets, the following
notions are introduced (similar concepts can be found in [2]):

Definition 9 (May-enabled action in a state). An action α is may-enabled in a state
s, if α ∈ enabled(s) or α can become enabled after a sequence of transitions from processes
other than pα. �

An action α /∈ enabled(s) can be may-enabled in a state s when the source location of α
is s(pα), but the guard condition of α evaluates to false in s.3

Definition 10 (Future actions). For an α ∈ enabled(s), future_actions(s, α) is a set
of actions: β ∈ future_actions(s, α) iff there is a transition sequence w = w1...wn from s,
where wn = β, and the first action β0 of pβ in w is either α or β0 /∈ enabled(s). �

The condition on β0 in the definition of future_actions implies that β0 is may-enabled in
s. If β is in the same process as α, then β0 = α. Otherwise, β0 is not enabled in s.
We can easily compute an over-approximation of future_actions(s, α) by analyzing the
static model of the program. Initially, the actions of process pα are collected with a graph
search of the CFA of pα. An action β /∈ enabled(s) from another process that is may-
enabled in s can be enabled by an action γ reached in the CFA of pα (when γ writes
a variable that β uses in its guard condition). Then, future_actions(s, β) is computed
recursively to collect more future actions.
With the help of future_actions, we can compute source sets in a state. The current state
s and the precision Π of the current abstraction are the inputs of Algorithm 1. Initially,
any enabled action (or practically all enabled actions of a single process) is put in the
source set(-to-be) P . As long as any new action is added to P , the following is repeated:
future_actions(s, α) is calculated for each α ∈ enabled(s) \ P . If there is any action
β ∈ future_actions(s, α) that is dependent with an action γ ∈ P , α is added to P .
Before proving the correctness of Algorithm 1, I note the following property of software.
Branches in a program are defined in an if-elseif-else manner, that is the execution can
proceed on a branch independent of the variable assignment.

Property 1 For any location l of a CFA the disjunction of guard conditions of all outgoing
actions from l is true.4

3If processes can be created or terminated dynamically, actions can be may-enabled in other ways, too;
e.g., first actions of processes and join operations.

4An action without a guard is technically an action whose guard is true.

28

Theorem 3. A set P returned by Algorithm 1 for a state s and precision Π is a source
set in s for WΠ(s). �

Proof. Let us check the definition of source sets, that is, for each trace from s, one of its
weak initials is in P . Let w = w1...wn ∈WΠ(s) be a partially feasible abstract trace from
s. We have two cases:

1. ∃wi ∈ P for some 1 ≤ i ≤ n (that is w contains an action from P). Let wf ∈ P be
the first occurrence of an element of P in w: wj /∈ P for 1 ≤ j < f .
Then, (wj , wf) /∈ DΠ. To see this, assume the opposite: there is a wd dependent
with wf based on DΠ, and d < f . Since wf is the first action from P in w, wd can
be reached from s with actions from processes that do not have actions in P . That
is, wd ∈ future_actions(s, α) for some α ∈ enabled(s) \ P . In this case, Algorithm 1
would have added α to P in line 3 (with wd as β, wf as γ, and α as α using the
notation of the algorithm). This did not happen, so our indirect supposition is
wrong.
Since wf is independent with all actions preceding wf in w, wf .(w \wf) ≈Π w which
means by definition that wf ∈ WI Π

s (w). So one of the weak initials of w is in P ,
indeed.

2. ∄wi ∈ P for 1 ≤ i ≤ n.
This supposition implies that all actions in w are independent with all actions in
P based on DΠ. Assume the opposite: there is a wd for some 1 ≤ d ≤ n, and
γ ∈ P such that (wd, γ) ∈ DΠ. Reasoning is similar to case 1: since ∄wi ∈ P ,
wd ∈ future_actions(s, α) for some α ∈ enabled(s) \ P . Then, Algorithm 1 would
have added α to P which did not happen.
Since all actions in w are independent with all actions in P , there is at least one
α ∈ P that is a weak initial of w. For this, take a partial concretization c0, ..., cn

of w from s (c0 |= s). Take any action δ ∈ P : if δ ∈ enabled(c0), let α = δ.
Otherwise, there is a δ′ ∈ enabled(c0) of process pδ (starting from the same CFA
location as δ) based on Property 1. Furthermore, δ′ ∈ P since (δ′, δ) ∈ DΠ (as they
belong to the same process) and δ′ ∈ future_actions(s, δ′), so Algorithm 1 adds δ′

to P . As a consequence, δ′ is independent with all actions in w. In this case, let
α = δ′. Since α ∈ enabled(c0), and (α,wi) /∈ DΠ, we can infer that α.w ≈Π w.α, and
w.α is partially feasible from s based on Lemma 2. This means by definition that
α ∈WI Π

s (w), indeed. So one of the weak initials of w is in P , again. □

3.4 Experiments

In this section, I evaluate the efficiency of my algorithmic contributions presented in
Section 3.3. First, I introduce the plans of the experiment in Section 3.4.1, along with
the research questions I aim to answer in Section 3.4.1.1, and the technical configuration
details in Section 3.4.1.2. Then, I present and discuss the results of the experiment in
Section 3.4.2 with respect to the research questions. Finally, I outline the conclusions
of my experiments in Section 3.4.3, and discuss the potential threats to their validity in
Section 3.4.4.

29

3.4.1 Experiment Design

The goal of my experiment is to evaluate the performance of the static abstraction-aware
partial order reduction algorithm presented in Section 3.3. To facilitate the experimen-
tation, I implemented both a traditional static partial order reduction approach (later
SPOR), as well as the abstraction-aware static partial order reduction technique intro-
duced in this paper (later AASPOR). In pursuit of a fair comparison among the algorithms,
both implementations are extensions of the Theta [83] verification framework, which had
prior support for multi-threaded C programs (later NOPOR) [15]. In my experiments, I
executed different configurations of Theta over a set of input programs written in C.

3.4.1.1 Research Questions

To evaluate the presented approach, I aim to answer the following research questions.

RQ3.1 How does the performance of AASPOR compare to SPOR over the explicit ab-
stract domain?

RQ3.2 How does the performance of AASPOR compare to SPOR over the predicate
abstract domain?

RQ3.3 How does the practical performance compare to the theoretically exponential gain
over the program family introduced in Figure 3.2?

3.4.1.2 Experimental Configuration

I used the subset of the concurrency safety benchmark suite5 of SV-COMP [19] that is
parsable by Theta for RQ3.1-RQ3.2, and a direct implementation of Figure 3.2 for RQ3.3
with N := 20≤i≤8. The configurations were executed on virtual machines with Intel Core
(Haswell) processors, 3 dedicated CPU cores were allocated to each task. Experiments
regarding RQ3.3 were executed with 1800 seconds of timeout, while all others used 900
seconds as their time limit. I used a sequence interpolation-based refinement strategy with
depth-first search and thread-safe large-block encoding [57]. For the predicate domain I
used atoms as the basis of predicate splitting. For the explicit domain I used a maximum
number of enumerated successor states (maxenum) of 1 to preserve action-determinism,
which is required from the abstract state space.

3.4.2 Experimental Results

I executed 4 different configurations of Theta on the SV-COMP benchmark suite seen
in Table 3.1. Out of the 605 tasks successfully parsed by Theta and supported by the
analysis, a common subset of 334 tasks were successfully solved by the EXPL configura-
tions and 357 tasks by the PRED configurations within the time limit. No configuration
reported any wrong results. Table 3.1 shows the number of successfully solved tasks and
the sum of CPU time over the commonly solved tasks per abstract domain, as well as the
average explored transition count over the common subsets.
Based on the results, utilization of AASPOR as opposed to SPOR reduced both the
verification time and the number of expanded transitions, and managed to solve more

5gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/commit/2fa025c8

30

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/commit/2fa025c8cb683e5991b2bbdb057e4cb328700dc0

domain por explored
actions

CPU
time

solved
tasks

EXPL SPOR 15854 5916s 338
AASPOR 12963 5516s 344

PRED SPOR 11625 34982s 365
AASPOR 10453 33850s 369

Table 3.1: Different metrics of the evaluation

0 1 2 3 4 5 6 7 81

10

100

1,000

i

T
im

e
(s

)

NOPOR
SPOR

AASPOR

Figure 3.6: Execution time given i for N := 2i in Figure 3.2.

tasks. In both configuration-pairs consisting of an AASPOR and a respective SPOR
configuration, AASPOR outperformed the traditional SPOR algorithm. While the number
of explored transition is significantly reduced, the overall CPU time and the number of
solved tasks are only marginally affected.

RQ3.1 In the predicate abstract domain, by using AASPOR, the sum of CPU time uti-
lization decreased by 6.77%, and the number of expanded transitions by 18.23%.
The number of solved tasks increased by 6.

RQ3.2 In the explicit abstract domain, by using AASPOR, the sum of CPU time utiliza-
tion decreased by 3.23%, and the number of expanded transitions by 10.08%.

In addition, I executed three configurations of Theta on the program family in Figure 3.2,
as seen in Figure 3.6. I used the predicate abstract domain with initial predicates extracted
from the program (allassumes).

RQ3.3 While NOPOR only solved 2 tasks (N = 1, N = 2) within the time limit, and
SPOR solved 1 additional task N = 4, the AASPOR configuration solved all 9
configurations, up to N = 256. Indeed, my abstraction-based POR algorithm scales
much better on this task.

3.4.3 Evaluation Summary

As demonstrated by the data in Figure 3.6, there are certain scenarios where the utilization
of AASPOR may lead to vastly improved verification performance (see RQ3.3). In con-

31

trast, in the subset of the benchmark suite of SV-COMP parsable by Theta, this advan-
tage is less pronounced, presumably due to the lack of patterns where an abstraction-based
verification algorithm could show its strengths. However, the significantly fewer explored
transitions, and the decreased execution time of solved tasks shows that the presented
approach is confidently outperforming its baseline (RQ3.1-RQ3.2).

3.4.4 Threats to Validity

The following factors may influence the validity of the experiments.
Internal Validity. Consistency and accuracy of the experiments were insured by using the
BenchExec framework [28]. Memory consumption statistics may deviate between execu-
tions due to the managed nature of the Java virtual machine, therefore such metrics are
not used. CPU time and therefore solved tasks may be influenced by external factors such
as other processes or environmental temperature fluctuations, therefore minute differences
are disregarded.
External Validity. The results of the experiments are at risk of not being generalizable
due to the relatively low number of input tasks. As mentioned in Section 3.4.3, the lack of
certain patterns in the benchmark suite leads to the diminished advantage of the AASPOR
algorithm. However, the SV-COMP benchmark suite is the de-facto standard for academic
verification tool development, and immense work would be necessary to extend the suite
with further real-life examples.
Construct Validity. In order to corroborate that the right metrics are used in the evaluation
of the experiments, I considered both the user-facing and the backend-related interactions
of the verification tool. The number of solved tasks, and the CPU time necessary for the
solution both directly affect the user’s ability to verify programs at hand, and the decrease
in expanded transitions will influence the number of solver invocations, reducing the load
on the entire system. Therefore, these metrics accurately represent the expected outcomes
of the executions.

3.5 Related Work

Partial order reduction has been a field of active research in the last decades [84, 51, 76,
13, 46, 1]. Early POR methods [84, 13, 51] approximated the conflicts between actions
statically. Later, a depth-first search manner dynamic partial order reduction (DPOR)
algorithm was introduced [46], where dependence between actions is decided dynamically
during the state space exploration looking at the exploration stack. Source DPOR is a
dynamic POR algorithm [1] whose extension, Optimal DPOR [1] is proven to be opti-
mal in the number of explored interleavings. Many optimizations exist for determining
dependency where information is retrieved from the state space search context: in these
works, actions are considered dependent only in certain states under certain conditions
[6, 10, 86], although these conditions are typically not related to information about the
applied abstraction.
Several works use POR in the context of an abstraction-based verification algorithm [21,
85, 80, 59, 70, 79, 53]. However, most of them do not take advantage of using information
about the current abstraction in order to increase the reducing effect of POR, whereas
this is the key concept of my proposed approach.

32

CPAchecker is a program verification framework that supports several analysis
techniques, including Counterexample-Guided Abstraction Refinement (CEGAR) and
POR [21]. However, the POR algorithm implemented in CPAchecker is relatively sim-
ple: only thread-local operations of different threads are considered independent (where
an operation is global if it accesses a global memory location and thread-local otherwise).
That is, the application of POR is orthogonal to CEGAR in CPAchecker.
In the works of Su et al. [80], Kroening et al. [70] and Wachter et al. [85], the specific
abstraction-based verification algorithm Impact is combined with a POR algorithm. Al-
though some of them use conditional dependency, their conditions are similar to the
guarded independence relation described by Wang et al. [86], and they do not exploit
information about the applied abstraction to reduce dependency. Kroening et al. [70]
also discuss the necessary extensions for DPOR algorithms when the abstraction-based
algorithm uses covering. Covering is applied in abstract state space exploration when
an abstract state is reached that is over-approximated by another abstract state reached
earlier during the exploration. The exploration stops at these states as all possible be-
havior is already explored from the other (more general) state. Combining this technique
with the depth-first style DPOR algorithms needs extra consideration [70]. Hansen et
al. [59] use POR for the abstraction-based verification of timed automata. Though they
use information about the current abstraction, they define relations such that one order
of execution simulates the other one. My case is more general: any execution order can
be selected for exploration based on my approach and none of the executions have to be
the over-approximation of the other.
Several works realize that even the traditional dependency relation is not a valid depen-
dency relation [33, 79]. The combination of POR and abstraction in the work of Cimatti
et al. [33] is specific to the Explicit Scheduler and Symbolic Threads (ESST) algorithm,
while my approach is general. In my general setting, two syntactically independent ac-
tions may disable each other in the abstract state space (see Figure 3.4 in Example 6)
whereas they implicitly assume in their proof that such situation cannot happen. Hansen
[58] also considers the application of partial order reduction in non-deterministic abstract
state spaces. However, the work focuses on the challenges posed by non-determinism, and
not the generalization of the commutativity relation.
A central element of my work is the idea of abstract commutativity relations investigated
by Farzan et al. [45]. They realize that the commutativity relation can also be relaxed in
an abstraction-based setting. However, their theoretical analysis focuses on the properties
of abstract commutativity relations and their combinations, and they do not embed the
commutativity checking in a verification algorithm. On the other hand, my work assumes
an abstract state space exploration and a partial order reduction algorithm (this assump-
tion is still a general partial order reduction in a general abstraction-based verification
algorithm). Thus, my work faces the challenges and proposes a solution to the application
of abstract commutativity in verification algorithms, constituting the main contribution
compared to the work of Farzan et al. [45].

33

Chapter 4

Abstract Data-Flow-Based
Statement Reduction

Various techniques have been developed to tackle the state space explosion problem and the
great number of possible thread interleavings in concurrent programs. Abstraction reduces
the size of the state space by ignoring some details of the original problem. In Chapter 2,
I presented Counterexample-guided abstraction refinement (CEGAR) that iteratively re-
fines the abstraction until the desired property can be verified. Other abstraction-based
techniques like the cone-of-influence (COI) reduction or program slicing eliminate model
elements irrelevant to the verified property [18, 60].
Existing cone-of-influence and program slicing techniques choose eliminable variables or
statements using static data-flow analysis based on the control-flow graph of the pro-
gram [18, 60]. In multi-threaded programs, this kind of elimination is often ineffective due
to the communication between threads and the many possible thread interleavings. To ad-
dress this, I propose an algorithm that can eliminate statements based on the current local
states of concurrent threads. Whereas the COI reduction simplifies the model by elim-
inating completely redundant variables (redundant in all thread contexts) regarding the
verified property [18], my approach identifies and simplifies statements on-the-fly that are
redundant in the current state of concurrent threads with respect to the verified property.
Thus, my method is more fine-grained: it can eliminate statements in certain contexts
even if the statement cannot be completely ignored. This is particularly useful when a
statement is relevant in one interleaving of threads while it is redundant in another: we
can still eliminate it in the interleaving where it is redundant. As my algorithm takes its
main advantage from the local states and interleaving of concurrent threads, I focus my
presentation on concurrent programs. At the same time, it can also be used for sequential
programs, though losing its advantage over existing techniques in this case.
As an example, take the program with two threads from Figure 4.1. Let us take a state
s from the state space of the program where process p2 has executed the statement y :=
x previously (i.e., this statement can be found on the path from the initial state to s).
Observe that the value of x cannot be read by any statement of any thread reachable from
s in the state space. Thus, it is unnecessary to evaluate x := 1 or x := 0 after s. My
algorithm detects such situations and eliminates such statements. Note that a traditional
COI algorithm could not eliminate the statement x := 1 as its result may be used.
My statement simplification method is motivated by the considerable runtime of calculat-
ing successor states in SMT-based state space exploration [27, 57]. I strive to dynamically
identify as many redundant statements as possible in the current exploration context. For

34

Process p1

x := 1
y := 1
assert(y=1)

Process p2

y := x
x := 0

Figure 4.1: Running example (pseudocode of the example in Figure 2.1)

this, I build a data-flow graph and update it based on the current thread interleaving
during the state space exploration to reflect the individual states of each process. Before
evaluating a statement (i.e., calculating the successor of the current state with respect
to this statement), I check using the data-flow graph whether any other statement can
use the result of the statement. I target reachability properties; thus, I am interested in
whether the result of the statement is used transitively by a conditional statement, as
only conditionals can directly influence whether some marked error locations in the model
are reachable. This can be decided by a traversal of the data-flow graph. Redundant
statements are eliminated, sparing the time of successor state calculation in such cases. I
formulate my algorithm for abstract state space exploration and exploit information about
the current abstraction to reduce the number of edges in the data-flow graph.
To further motivate my approach, it is also possible to achieve exponential gains in the
number of evaluated statements by using my novel algorithm. Consider the same example
again from Figure 3.2 with 2N+1 processes. The safety of the program can be proven with
abstraction by only tracking the predicates z mod 2 = 0 and x = 0 about our variables.
Processes p1 − p2N have 2N ! interleavings not considering the statements of the loop of
p0. However, my algorithm notices that we do not track any information about y, so the
results of statements writing y are not used in the current abstraction: thus, my approach
eliminates all of these statements (2N !∗2N statements exactly). My approach also enables
any standard partial order reduction algorithm [3, 1] to reduce the number of explored
interleavings exponentially that otherwise would have to explore all interleavings. My
algorithm achieves this by eliminating the source of dependency between statements. The
abstraction-based partial order reduction presented in Chapter 3 is not even required for
this; the proposed algorithm in this chapter can also handle the problem.
Contributions. I take the idea of cone-of-influence one step further by deciding on-the-
fly during state space exploration whether the result of a statement can be used later.
I present a novel algorithm for identifying redundant statements using an abstract dy-
namically updated data-flow graph. Furthermore, I discuss the necessary additions in
an iterative abstraction-refinement verification scheme (namely, CEGAR). I implemented
and evaluated my algorithm in the abstraction-based model checking tool Theta [83].

4.1 Statement Reduction during Dynamic Analysis

This section presents a method for simplifying the statement of an action before calculating
the successors of the current state with respect to the action. Basically, when there is no
possible interleaving of threads from the current state where the value of a written variable
is read by any relevant statement regarding the verified property, I do not evaluate the
expression writing the variable.

35

4.1.1 Data-Flow Graph with Precision

First, I formalize the connection between actions of the program when one action uses the
result of another action.

Definition 11. Let α, β be actions, and Π be the precision of the abstraction. We say
that β observes α with precision Π if written(α) ∩ read(β) ∩ vars(Π) ̸= ∅.
An action α is transitively observed by an action β in a trace w = w1...wn if there is a
sequence of indices i1, ..., im (1 ≤ i1 < ... < im ≤ n) such that wij is observed by wij+1 for
each 1 ≤ j < m, and wi1 = α, wim = β. �

Note that the sequence of indices does not necessarily contain adjacent indices: for exam-
ple, in the trace x = 1, z = 1, y = x, the last action transitively observes the first with
indices i1 = 1 and i2 = 3 in the definition. Each action α transitively observes itself as
the trace consisting of the single action α fulfills the conditions of the definition. Also
note that this is an over-approximation of possible data-flow between α and β, since it is
possible that a variable is rewritten before it is observed (e.g., actions x = 1, x = 2, y = x
in this order).
I build an abstract data-flow graph whose nodes are statements of the program and a
directed edge represents an observation between the connected nodes, i.e., the target
action observes the source of the edge. There are two types of edges: in-process (Direct)
and inter-process (Indirect) observation.

Definition 12. An abstract data-flow graph is a tuple G = (A,D, I,Π) where:

• A is the set of actions of the program (the nodes of the data-flow graph),

• D ⊆ A×A is the set of direct observation edges: (α, β) ∈ D if β observes α with Π,
pα = pβ, and β is reachable from α in the CFA of their process,

• I ⊆ A×A is the set of indirect observation edges: (α, β) ∈ I if β observes α with Π
and pα ̸= pβ.1 �

The data-flow graph can be precomputed for the state space exploration. For collecting
direct observation edges, the CFA is traversed from each action α, and for each action β
reachable from α, (α, β) is added to D if β observes α. For inter-process observation, I
simply iterate over the actions of all other processes and add an indirect observation edge
wherever needed. So the data-flow graph can be built in polynomial (quadratic) time in
the number of CFA edges.

Example 8. Let us have the simple program from Figure 4.1: its CFA is shown in Fig-
ure 4.2. The figure also shows two abstract data-flow graphs: the upper one with a precision
where some information is tracked about both x and y (vars(Π) = {x, y}); below, we have
no information about x (vars(Π) = {y}). Therefore, no edges start from actions assign-
ing x in the second graph. Solid edges are direct observation edges, dashed edges represent
inter-process observations.

1On the implementation side, when threads can be created and terminated dynamically, several threads
can have the same CFA process. In that case, inter-process observation edges may exist between actions
of the same CFA process.

36

x = 1

L0

y = 1

L1

[y = 1] [y ≠ 1]
L2

final error

y = x

L3

x = 0

L4

L5

x = 1

y = 1

[y = 1] [y ≠ 1]

y = x

x = 0

x = 1

y = 1

[y = 1] [y ≠ 1]

y = x

x = 0

Process p1 Process p2

Figure 4.2: CFA of two processes and data-flow graphs with different precisions

4.1.2 Simplifying Statements On-the-Fly Based on Data-Flow

Let Π be the precision of the abstraction, and G = (A,D, I,Π) the computed abstract
data-flow graph. Let s be a state, α ∈ outgoing(s): our goal is to decide whether α can
be transitively observed later during the program execution in a relevant way. I target
reachability properties, so relevant actions are the actions with guard conditions since
reachability of error locations of the CFA can only be blocked by conditional statements.
I will refer to these relevant actions as real observers. Real observers are colored in Fig-
ure 4.2. Thus, the evaluation of α can be skipped if there is no trace from the current state
where a real observer transitively observes α2. This can be decided using the data-flow
graph. To formalize this idea, I introduce the following definitions:

Definition 13. Let s be an abstract state and p be a process. Let reachable(s, p) denote
the set of actions such that α ∈ reachable(s, p) if there is an abstract trace w in the
abstract state space from s with α ∈ w and pα = p. �

Intuitively, if α is transitively observed by an action β in a trace starting from the current
state s, then there is a path in the data-flow graph from α to β only passing through
graph nodes (actions) which can still be reached from s by one of the processes. Formally,
I define conditions for the enabledness of the data-flow graph edges:

Definition 14. Let s be an abstract state, and G = (A,D, I,Π) an abstract data-flow
graph.

• An edge (α1, α2) ∈ D is enabled in s if α1, α2 ∈ reachable(s, p) for some process p.

• An edge (α1, α2) ∈ I is enabled in s if α1 ∈ reachable(s, p1) and α2 ∈ reachable(s, p2)
for some processes p1 ̸= p2. �

Rephrasing the previous paragraph: if there is a trace from s where α is transitively ob-
served by an action β, then there is a sequence α1, ..., αn such that α1 = α, αn = β,
(αi, αi+1) ∈ D ∪ I for each 1 ≤ i < n, and (αi, αi+1) is enabled in s. Using the definition,
deciding the enabledness of a data-flow graph edge amounts to answering reachability
questions in the state space (see Definition 13) which is also the original purpose of the

2Note that based on the reflexivity of the transitive observation relation, conditional statements are
never simplified.

37

verification of reachability properties: seemingly, the problem has not become easier. How-
ever, reachable(s, p) can be over-approximated by checking reachability in the CFA of the
program3.

Example 9. Let us continue our example from Figure 4.2 with a precision Π such that
vars(Π) = {x, y} (i.e., the upper data-flow graph in Figure 4.2). In the initial state where
both processes are in their initial locations (L0 and L3), all actions may be reachable in
the future by one of the processes since we over-approximate reachability in the state space
by reachability in the CFA. Thus, all data-flow graph edges are enabled, so there is a path
of enabled data-flow graph edges from both outgoing actions x = 1 and y = x to a real
observer (e.g., to [y = 1]). However, if we have a state where the processes are in locations
L0 and L4, then y = x can never be reached from this state, so all data-flow graph edges
leaving or targeting y = x are disabled. That is, there is no path from x = 1 and x = 0 to a
real observer in this state, so these actions are not transitively observed by a real observer,
and thus, do not have to be evaluated from this state.

This example also shows a great advantage and novelty of my algorithm over existing cone-
of-influence and program slicing techniques: some statements (x = 1 in our case) can be
removed in certain states even though the same statement may be important and needs to
be preserved in other states.

Using an adequate data structure, edge enabledness in the data-flow graph can be over-
approximated in constant time using CFA reachability information. For indirect edges,
CFA reachability information can either be stored in a 2D array (with constant time in-
dexing) or a more memory-efficient, but slightly more over-approximating approach based
on strongly connected components can be used (by storing the CFA strongly connected
component id number for each CFA edge and comparing these ids on-the-fly). All direct
observation edges reachable in G from an action α ∈ outgoing(s) are enabled based on
Definition 14.
For each action α ∈ outgoing(s), we traverse the data-flow graph from α in the way
introduced above. If a real observer is reached, then the value produced by α is used (or
at least may be used, c.f., the applied over-approximations), so we evaluate α properly to
calculate the successor states α(s). However, if no real observer is reached, then the value
is unused, making α unnecessary to evaluate. Instead, the successor state s′ can be the
state differing from the current state s only in the location of the process of α: s′(pα) is
the target location of α. The following method is used to determine the successor states:
for the single variable v ∈ written(α), if v ∈ vars(Π), the original statement assigning a
new value to v is replaced by a havoc v statement; if v /∈ vars(Π), the original statement is
removed (more precisely replaced with a no operation statement that has no effect). Using
havoc on the variables tracked in the current abstraction is necessary for the refinement
step of CEGAR (see Section 4.1.3 for more details).
Algorithm 2 summarizes the presented method of statement simplification based on dy-
namic data-flow analysis. Theorem 4 proves that using Algorithm 2 for state space explo-
ration yields correct results, that is, it reaches an error state whenever an error state is
reachable with a feasible trace in the original state space. By original state space, I mean
the abstract state space explored without the introduced statement simplification (i.e., for
each α ∈ outgoing(s), the successor states α(s) are all explored).

3This over-approximation would be too coarse for the original reachability question of the verification
in most cases. However, it can be effectively used for our purposes to answer reachability questions on a
lower level.

38

Algorithm 2: State Space Exploration with Statement Simplification
Input: s0,Π /* initial state, precision */
Output: verdict /* safe/unsafe */

1 G← construct abstract data-flow graph with Π
2 waitlist← {s0}
3 while waitlist ̸= ∅ do
4 s← remove an item from waitlist
5 if s is an error state then return unsafe
6 else
7 foreach α ∈ outgoing(s) do
8 if ∃ path in G of enabled edges in s from α to a real observer then
9 successors← α(s)

10 else
11 if written(α) = {v} and v ∈ vars(Π) then
12 α′ ← havoc v
13 successors← α′(s)
14 else
15 s′ ← s
16 s′(pα)← target location of α
17 successors← {s′}
18 waitlist← waitlist ∪ successors
19 end
20 end
21 return safe

Theorem 4. Algorithm 2 returns an unsafe verdict whenever an error state is reachable
in the concrete state space. �

Proof. A reachable error state in the concrete state space means that the original abstract
state space contains a feasible abstract error trace. I prove that if we take successors
instead of α(s) in a step of the algorithm, then if there is a feasible abstract error trace from
s starting with α, there is also a feasible abstract error trace from some s′ ∈ successors.
We have the following cases:

1. α is transitively observed by a real observer.
Then α is not simplified, so successors = α(s). Naturally, if there is a feasible abstract
error trace from s in the form α.w, then w is a feasible abstract error trace from at
least one element of successors = α(s).

2. α is not observed transitively by a real observer, and v /∈ vars(Π) for the single item
v ∈ written(α).4

In this case, α practically has no effect since no information is tracked about v in the
current abstraction. So an assignment of v only performs a location update for pα.
This is exactly how s′ defined in lines 15-16, so successors = α(s) in this case, as
well. Similarly to case 1, there is a feasible abstract error from at least one element of
successors = α(s).

4Note that written(α) has exactly one item when α is not transitively observed by a real observer
because α must be an assignment then.

39

3. α is not observed transitively by a real observer, and v ∈ vars(Π): α is replaced by a
havoc statement.
A feasible abstract error trace α.w from s implies that there is a concrete state c
with c |= s such that α.w is a trace from c to a concrete error state. Note that an
unobserved α can be a deterministic or non-deterministic assignment. If we have a
non-deterministic assignment, we are back in the previous case since practically, α is
not replaced (a havoc replaced with a havoc on the same variable). So we consider α
as a deterministic assignment, that is α(c) = {c′}. Thus, w is an error trace from c′.
Now, if we take α′ instead of α, then c′ ∈ α′(c) since a havoc means that v can get
any value from its domain including the value c′(v) originally assigned by α. Based on
the abstraction, for each concrete state ĉ ∈ α′(c) there is an abstract state ŝ ∈ α′(s)
such that ĉ |= ŝ. Therefore, for c′ ∈ α′(c), there is an abstract state s′ ∈ α′(s) with
c′ |= s′. This way, w being an error trace from c′ implies that w is a feasible abstract
error trace from s′ ∈ successors = α′(s).

As the property proven above is preserved in each exploration step, it follows by induction
that if a feasible abstract error trace is available from the initial state, then there is a
feasible abstract error trace in the state space explored by Algorithm 2, as well, which
proves the theorem. □

4.1.3 Statement Simplification with CEGAR

My proposed algorithm can be used by the abstractor of CEGAR for abstract state space
exploration (see Section 2.3.2 for an introduction of CEGAR). However, it is important
that a potential counterexample provided to the refiner must contain the original actions
even if my algorithm simplified them during the state space exploration. For a reason,
consider a program with a single process which is Process p1 from Figure 4.2, but let
the action from L1 to L2 be y = x. Let our precision only track information about x:
vars(Π) = {x}. An error state is reachable in the abstract state space with the clearly
spurious trace (x = 1, y = x, [y ̸= 1]). However, my algorithm simplifies x = 1 and y = x
since they are not observed by a conditional action with this precision. If the refiner only
sees the simplified actions in the trace, i.e., (havoc x, no operation, [y ̸= 1]), it cannot spot
the contradiction. Concluding that the counterexample is feasible, it would give a wrong
unsafe verdict.
My algorithm presented previously can also be used in verification algorithms other than
CEGAR. In such a case, it may be possible to drop lines 11-14 of Algorithm 2 and always
use lines 15-17 to define the successor state when α is not observed transitively by a real
observer. However, I focus on CEGAR as the base algorithm in this work, making the
havoc necessary when the assignment of a variable in the precision is simplified. If the
successor state is defined as in lines 15-16 instead of using a havoc, the refiner may see a
contradiction. For example, assume that the value of variable x is explicitly tracked in a
CEGAR iteration, and the abstractor finds a counterexample trace. The trace contains a
state s where x = 0, and the next action α assigns 1 to x. However, my algorithm noticed
that α cannot be transitively observed by any real observer, so it skipped the evaluation
of the statement of α. Based on lines 15-16 of the algorithm, the value of x would be the
same (namely 0) in the state s′ after α in the trace. Then, the refiner finds a contradiction
here as the value of x cannot be 0 after an action that assigns 1 to x (we have seen in the
previous paragraph that the counterexample must contain the original actions). On the
other hand, the precision could not be refined based on this misleading contradiction, and
the CEGAR algorithm could get stuck in endless iterations.

40

Applying a havoc statement instead of the unevaluated assignment overcomes this problem,
as the havoc statement covers the behavior of the original assignment whatever value it
would assign. Going back to our example, the havoc statement would erase the value of x
from s′, so it is not a contradicting state after α. Evaluating the havoc statement is still
a simple task, so it is still worth replacing the original assignments with it.
It is worth mentioning that my algorithm cannot introduce new spurious counterexamples
and degrade performance this way. Intuitively, guard conditions cannot get enabled as
a side-effect of my algorithm since Algorithm 2 only simplifies statements that are not
observed transitively by any conditional statement. Thus, the evaluation of guard condi-
tions is not affected, so new (spurious) counterexamples cannot emerge. As for originally
feasible counterexamples, they remain feasible with my algorithm as feasible traces are
always available in the abstract state space explored by our algorithm based on the proof
of Theorem 4.

4.2 Experimental Evaluation

In this section, I evaluate the efficiency of my algorithmic contributions presented in this
chapter. The goal of my experiment is to evaluate the performance of my proposed dy-
namic statement simplification algorithm. I refer to my novel algorithm as a dynamic
cone-of-influence-based statement simplification algorithm (or DCOI for short) in my ex-
periments. I compare my algorithm to a baseline using static cone-of-influence (SCOI)
to see how much further reduction is achieved (that is when DCOI and SCOI are both
enabled). Since DCOI can do the job of SCOI so to say, it is also meaningful to inves-
tigate the performance with only DCOI while SCOI is disabled. I am interested in the
effects of my algorithm in different abstract domains, therefore I investigate the effect of
our proposed algorithm in two abstract domains frequently used in state-of-the-art veri-
fication tools [20]: explicit-value abstraction (later EXPL) [23] and (Cartesian) predicate
abstraction (later PRED) [16].
I implemented 5 my algorithm as an open-source extension of the Theta verification
tool [83] which already had a built-in CEGAR algorithm and a static cone-of-influence
preprocessing step, and had prior support for multi-threaded C programs including a
partial order reduction algorithm [15]. I also compare my results to other state-of-the-art
verifiers using abstract state space exploration.

4.2.1 Research Questions

To evaluate the presented algorithm, I aim to answer the following research questions
concerning metrics relevant to it:

RQ4.1 What proportion of statements can be simplified or completely eliminated using
the proposed algorithm?

RQ4.2 How is the time of successor state calculation affected by my algorithm?

RQ4.3 How is the overall verification performance affected by the algorithm?

RQ4.4 What practical performance improvement can we observe on programs where
theoretically exponential gain is expected?

5https://github.com/csanadtelbisz/theta/commit/f2f1f8d

41

https://github.com/csanadtelbisz/theta/commit/f2f1f8d10600ead8b1866703014c57d5faa1a24d

domain coi simplified
by DCOI

successor
calculation

CPU
time

solved
tasks

EXPL
SCOI 0% 1254s 5581s 332

SCOI+DCOI 19.5% 880s 5548s 332
DCOI 19.6% 879s 5376s 334

PRED
SCOI 0% 22168s 40496s 352

SCOI+DCOI 19.7% 15289s 35102s 358
DCOI 19.6% 15118s 34582s 358

Table 4.1: Different metrics of the evaluation

4.2.2 Experimental Configuration

In my experiments, I executed different configurations of Theta over a set of input pro-
grams written in C from the concurrency safety reachability category benchmark suite6 of
SV-COMP [20] (715 tasks) that is parsable by Theta (602) for RQ4.1-RQ4.3 and a direct
implementation of Figure 3.2 for RQ4.4 with N = 20≤i≤7. I executed 6 configurations on
the SV-COMP benchmarks: both abstract domains (EXPL, PRED) with the three different
cone-of-influence methods (SCOI, SCOI+DCOI, DCOI). The benchmark tests were executed
on virtual machines with Intel Core (Haswell) processors, 2 dedicated CPU cores were al-
located to each task. Each verification task had a time limit of 900 seconds (1800 seconds
for RQ4.4) and a memory limit of 15GB. I used a sequence interpolation-based refine-
ment strategy for the refinement step of CEGAR, and depth-first state space exploration
with thread-safe large-block encoding and an abstraction-based partial order reduction
algorithm [15] in the abstraction phase. I used atoms as the basis of predicate splitting
for the predicate domain; and I used a maximum number of enumerated successor states
(maxenum) of 1 for the explicit domain [57]. My backend SMT solver was Z3. For the
exponential gain program, I used the predicate abstract domain with an initial precision
obtained by extracting branching conditions from the program. I also used a partial order
reduction algorithm [3] after applying DCOI (the same POR algorithm is also used when
DCOI is disabled).

4.2.3 Experiment Results

In the concurrency safety benchmark suite, Theta was able to parse 602 programs. No
configuration provided wrong results. Table 4.1 shows the results for different metrics
aggregated by configuration. For a fair comparison, the aggregated values are calculated
over the common subset of correctly solved tasks by abstract domain: a common subset
of 332 tasks was solved with the configurations using explicit-value abstraction, and 350
with predicate abstraction. The simplified by DCOI column shows the average proportion
of simplified statements (including completely eliminated statements) simplified by DCOI
compared to all statements. The successor calculation and CPU time columns are the
sum of successor state calculation and CPU times of commonly solved tasks.
The results confirm the reduction potential of my algorithm: configurations using DCOI
greatly outperform (depending on the abstract domain) the baselines without DCOI in
terms of both successor state calculation and overall verification performance. It is also
in line with my expectations that using DCOI without SCOI leads to slightly better per-

6https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

42

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/2fa025c8cb683e5991b2bbdb057e4cb328700dc0

0 1 2 3 4 5 6 71

10

100

1,000

i

T
im

e
(s

)

SCOI
SCOI+DCOI

Figure 4.3: Execution time given i for N := 2i in Figure 3.2

formance since DCOI can also eliminate the statements removed by SCOI with a minor
overhead while the time of SCOI is completely spared. Let us interpret the results by
answering the research questions:
RQ4.1 DCOI simplifies 19.6% of all statements on average (14% completely eliminated,
while 5.6% replaced by havoc with explicit-value abstraction; 14.4% and 5.2% respectively
with predicate abstraction). This confirms the relevance of my method: a significant
subset of statements is unnecessary in certain thread interleavings for verifying the given
property of the program.
RQ4.2 My algorithm greatly reduces the time of successor state calculation: by 29.9% with
explicit abstraction and 31.8% with predicate abstraction. A significant part of successor
state calculation is taken by SMT-solvers solving SMT problems (especially when using
predicate abstraction). Thus, the overall system load is significantly decreased by reducing
the SMT problem solving time.
RQ4.3 Overall performance is also improved, especially for predicate abstraction: DCOI
reduces the overall CPU time compared to the baseline by 3.7% using explicit abstrac-
tion, and by 14.6% using predicate abstraction. It was my expectation to have better
improvement with predicate abstraction since it is more costly to compute which tracked
predicates (or their negations) are entailed by the previous abstract state and the current
action. Thus, successor state calculation takes a greater portion of the whole verification
in predicate abstraction leading to a greater impact of my algorithm. The number of
solved tasks is only slightly increased probably because the complexity of input tasks is
not linearly increasing. The overhead of my algorithm is not huge though not completely
negligible: 197 seconds and 206 seconds for SCOI+DCOI and DCOI, respectively, aggregated
for all tasks with explicit-value analysis which is 3.6% and 3.8% of all CPU time. Similarly,
my algorithm ran for a total of 342 and 345 seconds with predicate abstraction taking 1%
of all CPU time in both cases.
RQ4.4 Even though the baseline used the same static COI and the same partial order
reduction algorithm, it could only solve the three smallest tasks in the set (up to N = 4),
whereas DCOI was able to verify 8 tasks, up to N = 128 as seen in Figure 4.3. Indeed, my
proposed algorithm scales much better on this program.
Comparison with the state-of-the-art. I also compare my solution to state-of-the-art ver-
ifiers. I select the best performing verifiers from SV-COMP 2024 concurrency category
[20] that use some kind of abstract state space exploration algorithm. Two state-of-the-
art tools with analyses conceptually similar to my approach are CPAchecker [14] and

43

PIchecker [81]. By conceptually similar, I mean that they also use state space explo-
ration of some form (unlike other tools that encode the program into an SMT formula
for instance). Other successful tools in SV-COMP are either bounded model checkers
(such as Dartagnan [40], Deagle [62], and CSeq [36]) that would be unfair choices
for comparison with a complete model checking algorithm; or use a conceptually differ-
ent trace abstraction algorithm (such as Ultimate Automizer [63], GemCutter [68],
and Taipan [43]); or use some advanced algorithm or tool selection strategies without
implementing own analyses (such as PeSCo [78], and Graves [71]).
I executed the two verifiers on the same SV-COMP benchmark data, on the same hardware
with the same limits. CPAchecker uses a standard state space exploration technique
for multi-threaded programs combined with a BDD analysis [21] and achieved to solve
346 tasks correctly7. PIchecker is built on CPAchecker and has multiple analyses for
concurrent software [81]. One that uses CEGAR and Craig interpolation could verify 246
tasks while its main method, a BDD analysis with an elaborate partial order reduction
algorithm could verify 388 tasks. My solution solving 358 tasks thus ranks second among
these similar analyses. While my contribution does not bring Theta to the first place
among these tools, it reduces the advantage of PIchecker. As a reference, the most
solved tasks by a single tool (using conceptually different techniques) was 452 in the SV-
COMP 2024 concurrency reachability category [20]. Though I only evaluated tools with
conceptually similar algorithms for a fair comparison, bounded model checker tools using
state space exploration could also benefit from my proposed optimization.

4.2.4 Threats to Validity

The following factors may influence the validity of my experiments.
Internal validity. I used BenchExec [28] to ensure accuracy. I ran my experiments on
virtual machines in the cloud computing platform of our university. External factors such
as loads on other virtual machines of the host and shared resources may have influenced
the results.
External validity. The SV-COMP benchmark suite is considered a de facto standard for
academic benchmarking in software verification. Theta can only parse a limited subset of
SV-COMP concurrent benchmark programs which further reduces generalizability. How-
ever, there might be more redundant model elements in real-world software than in the
simplified programs of the SV-COMP benchmarks, making my technique disadvantaged
on the benchmark set. Thus, my algorithm may achieve greater reduction in industrial
applications.
Construct validity. Evaluation metrics were carefully chosen to accurately describe the
performance of my algorithm: both end-user statistics (such as CPU time, number of
solved tasks) and backend-related information (such as the ratio of simplified statements,
successor state calculation time) were used. Therefore, these metrics accurately represent
the expected outcomes of the executions.

7CPAchecker also has a predicate analysis for concurrent software [26] but the algorithm is a bit
dated and this analysis can only verify 159 tasks.

44

4.3 Related Work

Several works aim to simplify the model by eliminating redundant model elements based on
data-flow analysis [18, 72, 64, 60, 44, 74]. However, these techniques only statically analyze
and simplify the input model which is limited compared to my on-the-fly data-flow analysis.
These static approaches have the advantage that they have to be executed only once
before the state space exploration while my algorithm is performed at each successor state
calculation. On the other hand, my experiments in Section 4.2 show that my algorithm
does not have a significant runtime overhead, so it is worth running my algorithm several
times to eliminate further statements. There are dynamic program slicing techniques as
well [60, 69]. However, dynamic in that context means those techniques use actual input
values or already discovered error traces for slicing [5]. These techniques also do not take
advantage of the local states and interleaving of threads (most of them formulated for
sequential programs [69]) which is the basis of my approach.
Many algorithms have been developed for model checking concurrent programs that reduce
the number of explored thread interleavings such as partial order reduction or maximum
causality reduction [1, 67, 4]. Some works perform dynamic data-flow analysis in various
ways to improve the reduction potential of these techniques [32, 10, 67, 4], though they
only use data-flow analysis to reduce the number of explored interleavings and not to
simplify statements. These techniques take explored traces and discover redundant state-
ments within these traces: they use this information to explore even less interleavings (e.g.,
by ignoring these statements when calculating a dependency relation [10]). The works of
Huang [67] and Agarwal et al. [4] discover causality connections and build causality con-
straints between statements (events) of a trace and simplify these formulae by eliminating
irrelevant statements which is a similar concept to my approach. However, they only
use this idea to simplify these constraints, but they still completely explore traces first.
So my approach could achieve further reduction in these cases as well. In other words,
these works aim to reduce the size of the explored state space whereas my purpose is to
accelerate the exploration of a (reduced) state space by skipping the evaluation of certain
program statements. My algorithm is orthogonal to these techniques and could be applied
on top of them to further improve the performance by eliminating further model elements.

45

Chapter 5

Verification with Partial Orders

Efficient algorithms for model checking multi-threaded programs often involve reason-
ing about happens-before relations which define a partial order of concurrent program
instructions [8, 7]. The program is symbolically encoded along with some scheduling con-
straints based on the possible happens-before relations. The encoding is often expressed
as a Satisfiability Modulo Theories (SMT) formula. The key concept of these bounded
model checking approaches is to use the models (variable assignments) provided by the
SMT solver to analyze possible partial orders and prevent scheduling inconsistencies that
may arise in these models during the verification. A scheduling inconsistency corresponds
to a cycle in the happens-before relation, since a valid execution of concurrent threads
must have a linearization of instructions. Any model found by the SMT solver whose
interpretation leads to a happens-before cycle does not represent a valid execution of the
multi-threaded program. Inconsistencies or conflicts in the model can be converted into
a conflict clause that can be used to exclude invalid program executions when looking for
an execution that violates the requirement of the verification [87, 61].
Even though these techniques have gradually improved and adapted to work efficiently
with SMT solvers, these methods put most of the reasoning into the SMT solver. While
SMT solvers are generally optimized, leaving most calculations to a general-purpose SMT
solver is not optimal in performance. SMT solvers ignorant of the domain of concurrent
programs often cannot make smart enough choices at decision points when looking for a
satisfying assignment of the encoded formula.
My work aims to considerably reduce the model search space of the SMT solver by con-
straining the encoding formula. I achieve this by analyzing the program structure and
possible partial orders of program instructions, and collect possible scheduling inconsis-
tencies, i.e., cycles that may arise in the happens-before relations. Figure 5.4 shows simple
structures of partial orders that lead to a cycle in the happens-before relation, and there-
fore represent an invalid partial order of concurrent program events. Conflict clauses
formulated from these conflicts are appended to the encoding formula. My contribution
enables to greatly improve the performance and scalability of the verification. I formulate
a general framework for reasoning with possible partial orders of concurrent program in-
structions. Then, I propose a novel approach and a specific algorithm that searches for
possible conflicts of bounded size. On one hand, applying a bound keeps a limit on the size
of the encoding formula, on the other hand, my evaluation shows that a great proportion
of invalid behavior is already excluded with the small bound.
Most works try to reduce the size of the encoding formula [87, 61, 82]. My method follows
these approaches in that certain basic scheduling constraints are omitted. On the other

46

hand, my approach performs early computations, and preserves some useful information
about partial orders. This way, I also add new elements to the formula: conflicting
partial orders that cannot occur together in a valid program execution. I select these
extra constraints in a way that is useful for the SMT solver which instead of putting an
overhead on the decision procedure, accelerates it considerably.
While reading the literature and analyzing algorithms in published papers, I discovered
a theoretical problem with a published verification algorithm described in [82]. Since the
problem is complex, its presentation is technical and does not fit in the limits of this thesis.
As a consequence of this discovered problem, the problematic algorithm is insufficient for
model checking concurrent programs under sequential consistency. I propose a way to
circumvent the limitations of the algorithm by extending with other techniques.

Contributions. This chapter presents the following contributions:

• I discovered a theoretical problem with a published algorithm as mentioned above.
I formulate a sound verification algorithm in Section 5.3 by combining existing con-
cepts. The resulting algorithm is suitable for model checking concurrent programs
under sequential consistency.

• I propose an optimization to partial order-based verification by automatically dis-
covering scheduling conflicts. The method is presented and proven to be sound in
Section 5.4.

• I created an implementation of my theoretical contributions as an open-source ex-
tension of the verification tool Theta [83]. My implementation achieves the best
result among state-of-the-art bounded model checkers in terms of the number of
solved problems on a large set of benchmark programs.

Figure 5.1 summarizes the approach with my contributions. The verification task is en-
coded into an SMT formula which is given to the SMT solver. If the formula is unsatisfi-
able, then the program is safe. Otherwise, we have to check whether the model returned
by the SMT solver represents a valid execution of concurrent instructions (my first con-
tribution in this chapter concerns this decision). If the model given by the SMT solver
represents a valid program execution indeed, then the program is unsafe. Otherwise, a
conflict clause is generated which is given to the SMT solver to exclude this inconsistent
model. This process is repeated until a safe or an unsafe verdict is reached. My second con-
tribution corresponds to the Automatic conflict finder box: my goal is to automatically1

discover conflicting situations and generate conflict clauses before giving the verification
formula to the SMT solver.
This chapter is structured as follows: a description of further necessary preliminary knowl-
edge is given in Section 5.1 and Section 5.2. I present the verification algorithm in Sec-
tion 5.3, and the proposed optimization in Section 5.4. Finally, I evaluate the presented
approaches in Section 5.5 and present the related work of the field in Section 5.6.

1The word automatic only refers to the fact that no SMT solver is needed for this approach. The
decision diamond in Figure 5.1 is also automatic in the sense that it does not require human interaction.

47

Verifier
encode

Verdict:
UNSAFE

Verdict:
SAFE

ψ

SMT solver

SAT
model of ψ UNSAT

generate

valid
concurrent
behavior

exclude invalid
model

Conflict
clause

generateAutomatic
conflict finder

[yes]

[no]

Verification Task

Program

Specification

Figure 5.1: Verification with Partial Orders

5.1 Weak Memory Models

This work does not really focus on weak memory models. However, the accurate theoretical
presentation of the paper requires some references to weak memory models. Therefore,
we need a few words to have a basic understanding of the concept of memory models. To
improve efficiency, most processors apply various kinds of memory reordering. A memory
model describes what types of memory or instruction reordering is allowed for a given
processor [11]. A weaker memory model allows more types of reordering. The verification
problem under a specified memory modelM asks whether there is a sequence of program
instructions violating the safety requirement that conforms toM by respecting the allowed
types of instruction reordering. For the presentation of this paper, the only relevant
aspect of memory models is the following: if a sequence of instructions is a valid program
execution under a memory model M1, the same sequence is also a valid execution under
all memory models M2 such that M2 is strictly weaker than M1 (where strictly weaker
means that all types of reordering allowed by M1 is also allowed by M2). Therefore if
a program is proven safe under the (strictly) weaker memory model M2, it is also safe
under the stronger M1.
The sequential consistency model does not allow any kind of memory reordering. Gen-
erally, memory models are often defined via a happens-before relation which specifies for
each pair of concurrent instructions in a declarative manner if one must happen before
the other or not; that is, if their order is important or not: in the latter case, they may
be reordered [55]. Since my work is based on reasoning with happens-before relations, I
give a detailed introduction in the next section.

5.2 Partial Orders

In this chapter, I use an event-based representation of multi-threaded programs [8]. Each
memory access is represented by an event e characterized by the memory address (which
variable or memory location is accessed), access type (read or write), and a guard condition
grde (an event is enabled if its guard condition is true; in other words, the event is part
of the program execution if its guard is true). The concurrent behavior of an execution is
represented by a happens-before relation ≺ on events. Intuitively, e1 ≺ e2 simply means

48

that e1 must precede e2 in the program executions represented by this happens-before
relation. An execution is valid (or consistent) if there is no cycle in ≺ (∄e such that
e ≺ e) [7], in other words, if there is a possible linearization (or sequentialization) of
events respecting ≺.

Example 10. Take the program of Figure 5.3a. Each variable access in the program is an
event: Figure 5.3b associates an index to each variable usage to have a unique reference to
events. The happens-before relation relates program events as demonstrated by the edges
in Figure 5.3c (ignore the different labels and colors of edges for now). For example,
the event x2 must happen before x3 in all program executions represented by that specific
happens-before relation. In fact, the happens-before relation in the figure does not represent
any valid execution due to the cycle in the relation (the transitive closure of the relation
contains a self-loop: e.g., x2 ≺ x2).

The happens-before relation can be defined by giving a list of base relations and a list of
rules (or axioms) prescribing that if certain event pairs are happens-before-related, then
other events must also be related [61, 88]. The most straightforward rule is transitivity
(formally given in Axiom 1 later). The definition of the happens-before relation varies
by memory model. In memory models defined by an acyclic happens-before relation, the
conformance of a program execution to the memory model means that retrieving the base
relations from the execution and applying all rules to the happens-before relation results
in an acyclic happens-before relation.
The following base relations can relate the events of the program (a detailed example of
partial orders is given later in Section 5.3, see Figure 5.3) [7, 61]:

• The program order ≺po is a total order of events of the same thread. It is the order
of events respecting the order of instructions in the program code2.

• The read-from relation ≺rf relates a write event w to a read event r (written w ≺rf r)
if r reads the value written by w.

• The coherence order relates write events to the same variable (or memory location)3.

The above list is only an example: there can be other base relations used in the definition
of the happens-before relation, and these are not necessary either. An important property
of the rf-relation is that if w ≺rf r, then there cannot be another write event w′ to the
same memory address between w and r. Otherwise, r could not read the value written by
w as it would have been overwritten by w′. Some rules (derivation rules) can be devised
from this property [61, 88]:

• A write-serialization order relates two writes w′ ≺ws w if there is a read r such that
w ≺rf r and w′ precedes r. In such a case, w′ cannot happen between w and r, so
it must precede w as well.

• A from-read order relates a read and a write event r ≺fr w
′ if there is a write w such

that w ≺rf r and w precedes w′. Similarly, w′ cannot happen between w and r, so
it must happen after r as well.

2In a practical implementation where we can dynamically start and join threads, a thread creation or
join event is also related to the first/last event of the thread in ≺po as expected.

3I did not associate a notation to the coherence order because I will not use it formally in this work.

49

≺

≺

e1
≺e2 e3

(a) Transitivity

≺rfw r

≺

≺ws

w'

(b) Write-Serialization

≺rfw r

≺

≺fr

w'

(c) From-Read

Figure 5.2: Deriving Happens-Before Relations

While the ideas presented in this chapter can be generalized to memory models with an
acyclic happens-before relation, I will focus my presentation on sequential consistency
(SC) being the most basic and intuitive memory model widely used in the literature and
practice [8]. In fact, I will consider a slightly weaker memory model than SC for practical
reasons: weak sequential consistency (wSC) [88]. The happens-before relation of SC is
defined by the program order, read-from and coherence order relations as well as the
from-read and transitivity rules. The only difference in wSC is that the coherence order
is replaced by the write-serialization rule. The difference may seem a minor technicality
(both the coherence order and write-serialization relate write events), but the truth is
wSC is generally easier to handle: deciding whether a program execution conforms to
wSC can be done in polynomial time [88] while (surprising as it may seem) the same
decision problem for SC is NP-complete [50]. Since my approach discovers cycles in the
happens-before relation, I can use that of wSC instead of SC: any cycle in the happens-
before relation of wSC can also be found in the happens-before relation of SC as SC is
strictly stronger than wSC [88].
I define formally the happens-before relation of wSC and I will use this happens-before
relation throughout the rest of the thesis:

Definition 15 (Happens-Before Relation ≺). e1 ≺ e2 holds for events e1 and e2 if:

• e1 ≺po e2, or

• e1 ≺rf e2, or

• e1 ≺ e2 can be derived by a sequence of derivation steps based on the axioms
Axiom 1, Axiom 2, and Axiom 3. �

Axiom 1 (Transitivity Derivation) For any events e1, e2, and e3:

(e1 ≺ e2) ∧ (e2 ≺ e3)⇒ (e1 ≺ e3).

Axiom 2 (Write-Serialization Derivation) For any write events w and w′, and any
read event r such that they all belong to the same memory address:

(w ≺rf r) ∧ (w′ ≺ r) ∧ grdw′ ⇒ (w′ ≺ w).

Axiom 3 (From-Read Derivation) For any write events w and w′, and any read event
r such that they all belong to the same memory address:

(w ≺rf r) ∧ (w ≺ w′) ∧ grdw′ ⇒ (r ≺ w′).

I will sometimes emphasize the used derivation step by writing ≺ws or ≺fr for orders
derived by Axiom 2 or Axiom 3, respectively. Figure 5.2 visually depicts the derivation
rules coloring the derived partial order in each case. Program order and read-from orders
come directly from the program code or from the data-flow of an execution, so they cannot
be derived from other partial orders, and thus, do not need axioms.

50

initially: x = y = 0

Thread t1

if(y==1) x=1;
else x=1-y;

Thread t2

y=x;
x=1-y;

finally: assert(x==1 || y==1)

(a) Original program

initially: x0 = y0 = 0

Thread t1

if(y1==1) x1=1;
else x2=1-y2;

Thread t2

y3=x3;
x4=1-y4;

finally: assert(x5==1 || y5==1)

(b) Indexed variable accesses

x0 y0

x1y1
rfrf

x2

x3 y3

x5 y5

y2

y4

ws

x4

(c) Program order and some other related events

Figure 5.3: Running example

5.3 Verification with Partial Orders

The verification algorithm is a bounded model checking algorithm requiring a loop-free
concurrent program and a safety property. Programs with loops can be handled by un-
rolling loops: complete loop unrolling can be applied in many cases, while a bounded un-
rolling may be necessary in some case. In the latter case, the proof of safety is valid up to
the loop unroll bound [77]. The program and the property are symbolically encoded into
an SMT formula: some constraints come straight from the program instructions, while
scheduling constraints ensure that concurrent behavior is properly modeled. A theory
solver is integrated into the SMT solver ensuring that scheduling constraints are satisfied.
A program execution is correct if it satisfies the safety property given as input to the
verification task. The program is safe if all valid executions are correct. The aim of the
verification is to prove that the program is safe, or to find a valid execution where the
correctness property is violated.
I adapt and combine the methods and ideas of He et al. [61], Sun et al. [82] and Zennou
et al. [88] for verifying multi-threaded programs under sequential consistency being recent
and efficient partial order-based approaches. While reasoning about program executions
conforming to the sequential consistency (SC) memory model is NP-complete [50], Zennou
et al. observe that reasoning is polynomial for weak sequential consistency (wSC), a
slightly weaker memory model than SC [88]. The idea is to reason efficiently under wSC
first. If the program is found safe under wSC, it is also safe under the stronger SC model.
If an execution violating the safety property is found that is valid under wSC, it must be
checked if it is also valid under SC. The algorithm for reasoning under wSC is taken from
Sun et al. [82]. Checking SC validity is done by applying the encoding of He et al. [61]
for determining the existence of a total order on write events (being the only difference
between SC and wSC).

5.3.1 Symbolic Encoding of Multi-threaded Programs

For the symbolic encoding of the program, each variable access is converted to an SMT
variable. Practically, the name of the SMT variable can be the name of the accessed

51

program variable with a unique index4. I write wxi or rxi for a write or read event (or exi

in general). By abusing the notation, I simply refer to grdexi
as grdxi

.
First, the assignments of the program are encoded into the first-order formula ρva. For each
write event wxi , if wxi is enabled, then the value of xi is obtained from the right-hand side
expression exprxi

of the assignment. Formally, we have ρva := ∧
∀wxi

(grdxi
⇒ xi = exprxi

).

As an example, take the simple program from Figure 5.3a with two threads. Figure 5.3b
shows the program where variable accesses are marked with unique indices. For example,
the guard of the write event wx1 is grdx1 := (y1 = 1), while grdx3 := true. The value
assignment of the program is as follows:

x0 = 0 ∧ y0 = 0 ∧ (y1 = 1⇒ x1 = 1) ∧ (y1 ̸= 1⇒ x2 = 1− y2) ∧ y3 = x3 ∧ x4 = 1− y4

The program order constraints are encoded into ρpo based on the order of instructions
per each thread. In case of branches, we can simply put the branches one after another
in the total order since only one branch can be enabled in any valid execution anyway.
Furthermore, thread creation and join operations are also reflected in ρpo by for example
relating events of the creator thread before the thread creation to events of the created
thread. The program order is represented in Figure 5.3c with solid black edges5.
To encode read-from constraints, a new Boolean variable rf x

i,j is introduced for each pair
of events wxi and rxj such that rxj may read the value written by wxi . If rf x

i,j is true, then
rxj gets its value from wxi (i.e., wxi ≺rf rxj), therefore xi must be the same value as xj and
both events must be enabled. Formally, we have rf x

i,j ⇒ xi = xj ∧ grdxi
∧ grdxj

which is
called the RF-Val constraint [61]. Also, if a read event is enabled then it must read its value
from a write event which leads us to the RF-Some constraint: grdxj

⇒ rf x
i1,j ∨ ... ∨ rf x

in,j

assuming that rxj can read from wxi1
, ..., or wxin

. We also have RF-Ord which connects
the rf variables and the ≺rf relation: rf x

i,j ⇔ wxi ≺rf rxj . The above constraints are
encoded in the formula ρrf -val , ρrf -some, and ρrf -ord respectively.
In our example, we would create the following rf-variables for the read event x3: rf x

0,3,
rf x

1,3, rf x
2,3 as x3 could read from any of these three write events. An RF-Val constraint

would be rf x
1,3 ⇒ x1 = x3 ∧ y1 = 1 (since grdx3 is true). An RF-Some constraint would

be rf x
0,3 ∨ rf x

1,3 ∨ rf x
2,3 (the implication is simplified as x3 is still always enabled). Finally,

the rf x
0,3 ⇔ wx0 ≺rf rx3 RF-Ord constraint would give the semantics of the rf x

0,3 variable.
In case where a violating program execution is found by the first stage of the verification,
we also need to encode write serialization constraints to check SC conformity. For this
purpose, similarly to read-from constraints, a new Boolean variable wsx

i,j is introduced
for each pair of same-memory write events. If wsx

i,j is true, then wxi happens-before
wxj . Formally, we have the following constraints: wsx

i,j ⇒ grdxi
∧ grdxj

called WS-Cond;
grdxi

∧grdxj
⇒ wsx

i,j∨wsx
j,i called WS-Some; and wsx

i,j ⇒ wxi ≺ws wxj called WS-Ord [61].
Finally, we have a correctness property to encode. Since we are looking for safety viola-
tions, the correctness property is negated to obtain an error property. The focus of this
paper is the verification of error reachability: this way, the error formula ρerr is the guard
condition of the marked error in the program. This is often expressed as an assertion in
the program: the error formula is the negation of the asserted expression (in conjunction

4Some works refer to this form as concurrent static single assignment [61] which name is slightly mis-
leading as static single assignment originally means a compilable form of the program with fresh copies of
variables per write access [37]. The applied form cannot be compiled and has fresh copies per each access.

5The program order relation is in fact the transitive closure of the solid black edges in Figure 5.3c.

52

with the guard of branches needed to reach the assert statement). The error property in
the example is the negation of the asserted expression, that is, ¬(x4 = 1 ∨ y3 = 1).
Now, we have obtained all constraints that we need to formulate the verification problem
as an SMT problem. We have two kinds of constraints:

ψssa := ρva ∧ ρerr ∧ ρrf -val ∧ ρrf -some (∧ρws-val ∧ ρws-some)
ψord := ρpo ∧ ρrf -ord (∧ρws-ord)

where ψssa only contains expressions that standard SMT solvers can handle, while ψord
contains the ordering formulae that need a specific theory solver (note the ≺ symbols in
ψord which is not a symbol of a usual SMT theory). The whole formula then becomes
Ψ = ψssa ∧ ψord . If Ψ is satisfiable, then a satisfying model gives a valid execution that
leads to an error. However, if Ψ is unsatisfiable, there are no valid executions where the
error property is also met, thus the program is safe [61]. I use the formulae without the
parts in brackets for the first check under wSC. If it turns out to be unsatisfiable, then
the program is safe under both wSC and SC. However, if it is satisfiable, I extend the
formulae with the bracketed parts to check under SC.

5.3.2 Ordering Consistency Theory

For the theory solver that can handle ψord , we need to define a set of axioms for propagation
rules and conflict detection as we have seen in Section 2.1. Fortunately, I have already
defined Axiom 1, Axiom 2, and Axiom 3 which can be used as the axioms of the theory
solver. Performing propagation and conflict detection with these axioms allows us to check
if there is any execution violating the safety property that is valid under the wSC model
[88, 82]. If the constraints for a total order of writes is also included in the encoding
formula in the potential second stage of the verification algorithm, then these axioms can
be used to check the existence of a violating execution under SC [61].
The events and the happens-before relation can be represented in the theory solver as a
graph where the vertices are events and edges are relations. At the beginning of the SMT
solving procedure, all rf variables are unassigned, therefore only edges corresponding to
≺po are present in the graph.
The theory solver has three main components: theory propagation, consistency checking,
and conflict clause generation. Theory propagation is applied when a new ordering variable
rf is assigned true by the SMT solver. Then the theory axioms are used to derive all
possible new orders. As theory propagation is not crucial for the main contribution of
this paper, I refrain from going into further details regarding the propagation algorithm. I
refer the interested reader for several possible propagation algorithms described in [61, 82].
Consistency checking is also straightforward: we have to check whether e ≺ e holds for
any event e in the current partial variable assignment after propagating event orders. An
order e ≺ e (a conflict) is equivalent to a self-loop in the event graph, so consistency
checking amounts to checking the presence of a self-loop in the event graph. As conflict
clause generation is crucial for the methods presented in this work, I elaborate a bit more
on that.
If an inconsistency is found by the theory solver, it must generate a conflict clause that
prevents this inconsistency and provide this conflict clause to the SMT solver. Therefore,
the theory solver stores derivation reasons for each derived happens-before order as first-
order logic formulae [82]. The following definition defines reasons of orders using the
notation of the corresponding axioms where needed:

53

Definition 16. The reasons for different types of orders are defined as:

• reason(e1 ≺po e2) := true, since these orders come from the program structure and
must be satisfied at all times,

• reason(wxi ≺rf rxj) :=rf x
i,j , that is the corresponding Boolean variable,

• reason(wxi ≺ws wxj) :=wsx
i,j , that is the corresponding Boolean variable,

• the reason for an order derived by Axiom 1 is:
reason(e1 ≺ e3) := reason(e1 ≺ e2) ∧ reason(e2 ≺ e3),

• the reason for an order derived by Axiom 2 is:
reason(w′ ≺ws w) := reason(w ≺rf r) ∧ reason(w′ ≺ r) ∧ grdw′ ,

• the reason for an order derived by Axiom 3 is:
reason(r ≺fr w

′) := reason(w ≺rf r) ∧ reason(w ≺ w′) ∧ grdw′ . �

Now, when the theory solver finds an inconsistency, that is, a self-loop e ≺ e in the event
graph, it can simply generate the conflict clause reason(e ≺ e). Adding the negation of
this formula to the set of assertions prevents the SMT solver from finding a model with
the same loop in the event graph again.
As an example, consider a partial variable assignment corresponding to Figure 5.3c in
our running example: where rf x

2,5 and rf x
2,3 have been assigned true. The solver can

now perform a write-serialization derivation on the events wx4 , wx2 , and rx5 since the
preconditions of Axiom 2 hold: wx2 ≺rf rx5 , wx4 ≺(po) rx5 , and wx4 is always enabled.
So the order wx4 ≺ws wx2 is inferred and added to the event graph as Figure 5.3c also
demonstrates. Then, we can find a loop in the event graph, which conflict is also found
as a self-loop (e.g., wx2 ≺ wx2) by the theory solver after applying the transitivity axiom
a few times. Then, the following conflict clause is generated:

reason(wx2 ≺rf rx3) ∧ reason(rx3 ≺po wx4) ∧ reason(wx4 ≺ws wx2) =
reason(wx2 ≺rf rx3) ∧ true ∧

(
reason(wx2 ≺rf rx5) ∧ reason(wx4 ≺po rx5) ∧ grdx4

)
=

rf x
2,3 ∧ rf x

2,5

where some true reasons, and true guards are omitted.

5.4 Automatic Conflict Detection

The presented verification algorithm is heavily integrated into SMT solving by putting a
considerable portion of reasoning into an SMT theory. While this is a nice and general
approach to the problem, leaving all calculations to the SMT solver (and the theory solver
therein) might not be optimal in performance. I present a novel way to improve the
performance and scalability of the verification by performing some pre-processing step
before giving the encoded formula to the SMT (and theory) solver.
It has been introduced in Section 5.3.2 how the theory solver finds conflicts, inconsistencies
in the scheduling constraints. An experimental analysis of conflicts found in real programs
revealed that the majority of these conflicts are simple in the sense that the self-loops found
in the event graph are typically derived from only a few other relations. Having such simple
conflicts motivates a pre-processing algorithm that can easily find these conflicts without
the computational overhead of the SMT solving procedure. The idea of my proposed

54

algorithm is to explore the program structure and retrieve possible conflicts of bounded
size in the number of derivation axioms necessary to obtain them.
In this section, I present my general framework for reasoning with an over-approximation
of the happens-before relations covering all possible behavior. Then, I present a general
approach to discover potential conflicting concurrent behavior. After presenting the gen-
eral approach, I also introduce an algorithm in this section that turns out to be both
efficient in terms of complexity and effective in terms of impact in my evaluation.

5.4.1 Over-Approximation of the Happens-Before Relation

At a pre-processing stage, we cannot speak about existing conflicts since they arise dur-
ing the SMT solving procedure when rf variables get assigned by the SMT solver, new
happens-before relations are derived by the ordering consistency theory solver using the
axioms of Section 5.3.2, and self-loops are found in the event graph. Before starting the
SMT solving, the values of rf variables are unknown since they are variables. Therefore,
pairs of events are not rf -related yet, axioms have not been applied, and actual conflicts
have not been found until my proposed algorithm is executed. Instead, the algorithm
deals with a potential rf relation and tries to find possible conflicts. I use the < sym-
bol for potential happens-before relations6 to highlight the semantic difference from the
real happens-before relation. I also define this potential relation similarly to the origi-
nal happens-before relation. First, I introduce the potential program order and potential
read-from relations:

• the potential program order is simply the same as the original program order relation:
<po=≺po (it is based on the program code);

• w <rf r if r may read the value written by w (that is, when an rf variable is created
during the symbolic encoding of the program).

Definition 17 (Potential Happens-Before <). e1 < e2 holds for events e1 and e2 if:

• e1 <po e2, or

• e1 <rf e2, or

• e1 < e2 can be derived by a sequence of derivation steps based on the axioms
Axiom 4, Axiom 5, and Axiom 6.. �

Axiom 4 (Transitivity Derivation for <) For any events e1, e2, and e3:

(e1 < e2) ∧ (e2 < e3)⇒ (e1 < e3).

Axiom 5 (Write-Serialization Derivation for <) For any write events w and w′,
and any read event r such that they all belong to the same memory address:

(w <rf r) ∧ (w′ < r)⇒ (w′ < w).

Axiom 6 (From-Read Derivation for <) For any write events w and w′, and any
read event r such that they all belong to the same memory address:

(w <rf r) ∧ (w < w′)⇒ (r < w′).
6Some related works use the may prefix for the over-approximation of certain relations or sets, or some

alternative terminology [56]. Instead, I opted for the potential prefix to avoid the slightly ambiguous
meaning of may and the grammatically dreadful may-happens-before name.

55

Remember that the happens-before relation relates events of the program in the context
of an execution (or set of executions). The newly introduced potential happens-before
relation relates events of the program without restricting the scope to any executions:
this is a relation describing potential concurrent behavior based on the static program
structure. This is also the reason for omitting the guard condition from the new axioms
compared to the original axioms: we cannot speak about enabled guards without the scope
of an execution.

Example 11. To illustrate the difference between < and ≺, take our running exam-
ple from Figure 5.3. Events x2 and x3 are rf-related (x2 ≺rf x3) in the execution
x0, y0, y1, y2, x2, x3, y3, y4, x4, x5, y5 (with x1 disabled). However, x2 ⊀rf x3 in the trace
x0, y0, y1, x3, y3, y2, x2, y4, x4, x5, y5. Since x3 may read the value written by x2 (as in the
first case), x2 <rf x3 universally.

The potential happens-before relation can also be seen as a real happens-before relation in
a model with all rf variables set to true. As a consequence, the potential happens-before
relation naturally contains a lot of cycles in most cases (except for programs with very sim-
ple structures). My proposed approach is to discover cycles in the potential happens-before
relation and use these potential conflicts to strenghten the program encoding formula.
Even though some elements of the potential happens-before relation might not materialize
as an element of the real happens-before relation of a valid execution, the found potential
happens-before loops cannot occur in any valid execution of the program. Thus, we can
use these loops similarly to infer conflict clauses and supply the negations of these conflict
clauses to the SMT solver as assertions. To convert the found loops in < to propositional
formulae, reasons can be defined similarly to Definition 16. I intentionally omit the ws
variables and the explicit encoding of write serialization constraints in this section to keep
the approach on a more general level: this way we only discover loops that are conflicting
with both the wSC and the SC models.

Definition 18. The reasons for different types of the potential happens before relation
are:

• reason(e1 <po e2) := true,

• reason(wxi <rf rxj) :=rf x
i,j ,

• the reason for an order derived by Axiom 4 is:
reason(e1 < e3) := reason(e1 < e2) ∧ reason(e2 < e3),

• the reason for an order derived by Axiom 5 is:
reason(w′ <ws w) := reason(w <rf r) ∧ reason(w′ < r) ∧ grdw′ ,

• the reason for an order derived by Axiom 6 is:
reason(r <fr w

′) := reason(w <rf r) ∧ reason(w < w′) ∧ grdw′ . �

This definition is indeed the same syntactically for < as Definition 16 for ≺. Note that even
guard conditions are used similarly and they are not omitted from the reason formulae
even though guards are omitted from the axioms for <. This is due to the semantic
difference of reasons used in the two contexts. For the original happens-before relation,
reason(e1 ≺ e2) refers to the preconditions that induce e1 ≺ e2. For the potential happens-
before relation, reason(e1 < e2) does not refer to the preconditions inducing e1 < e2; it

56

refers to the preconditions that make the potential e1 < e2 materialize as a real e1 ≺ e2.
The following lemma formalizes this connection between reasons for < and the original
happens-before relation. The subsequent theorem states the soundness of my approach.

Lemma 4. If reason(e1 < e2) is true in a model of the formula, then e1 ≺ e2 can be
derived in this model. �

Proof. I prove the lemma by structural induction on the definition of reason. For this
proof, it is useful to imagine reason(e1 < e2) as a tree structure (I refer to it as the reason
tree) where reason(e1 < e2) is the root node, each non-leaf node is a reason of a pair of
<-related events, the children of a node are given by Definition 18, and leaf nodes are
first-order terms:

• true, when its parent contains a pair of events related in <po,

• an rf variable, when its parent contains a pair of events related in <rf , or

• a guard condition, when its parent is derived from other potential orders by Axiom 5
or Axiom 6.

Looking at Definition 18 of reasons for the potential happens-before relation, we can
observe that reason(e1 < e2) is in fact a large logical and expression of the leaf terms of
its reason tree. If reason(e1 < e2) is true, then all leaf terms must also be true due to
the nature of the and operator. Thus, we can start from the leaves of the reason tree and
prove by induction for each (non-leaf) node reason(f1 < f2) that f1 ≺ f2 can be derived.
Reaching the root of the reason tree proves that e1 ≺ e2 can be derived.
We have two base cases for non-leaf nodes with only leaf children:

1. The node is reason(f1 <po f2):
reason(f1 <po f2) is always true by definition, and <po=≺po implies f1 ≺ f2.

2. The node is f1 <rf f2 with f1 = wxi and f2 = rxj :
reason(f1 <rf f2) = rf x

i,j by definition. The leaf rf x
i,j is true in the model based on

our observation for leaves which means that f1 ≺rf f2 (c.f., RF-Ord constraints).

For the inductive case of a non-leaf node with some non-leaf children, we have three cases:

1. reason(f1 < f2) with f1 < f2 derived by Axiom 4 as the transitive closure of f1 < f ′

and f ′ < f2:
We know that f1 ≺ f ′ and f ′ ≺ f2 can be derived by the induction hypothesis.
Applying the transitivity axiom Axiom 1 for the original happens-before relation
immediately gives that f1 ≺ f2.

2. reason(f1 <ws f2) with f1 = w′ and f2 = w, and f1 <ws f2 derived by Axiom 5 from
w <rf r and w′ < r for some read event r:
Again, we know that w ≺rf r and w′ ≺ r from the <rf base case and the induc-
tion hypothesis. We also know that the leaf child grdw′ is also true based on our
observation above. This way, Axiom 2 gives that w′ ≺ws w, that is, f1 ≺ f2.

3. reason(f1 <fr f2). The case is completely analogous with the previous case. □

57

Theorem 5. Let Ψ be the encoding formula of a program and a safety property, and let
E be a set of events e such that e < e.
Ψ is satisfiable if and only if Ψ ∧ ∧

e∈E
¬reason(e < e) is satisfiable. �

Proof. Trivially, if the right-hand formula is satisfiable, then Ψ is similarly so since the
right-hand formula is more restrictive.
For the other way, first I observe that no valid execution satisfies reason(e < e) for any self-
loop e < e. To see this assume that we have a valid execution which satisfies reason(e < e).
Lemma 4 implies that e ≺ e can be derived in this model. Thus, we reach a contradiction
since no valid execution can have a loop in its (original) happens-before relation.
By our observation, all valid executions must satisfy ¬reason(e < e) for any self-loop in
<. Since for each e ∈ E, all valid executions satisfy ¬reason(e < e), we arrive to the
conclusion that any execution satisfying Ψ also satisfies the right-hand formula. □

Theorem 5 basically says that no valid execution satisfies reasons of self-loops in the
potential happens-before relation, therefore the negations of these reasons are properties
that generally characterize all possible program executions. Thus, any algorithm that
finds any kind of cycles in the potential happens-before relation and uses these conflicts to
strengthen the encoding formula as explained above is safe to use and does not change the
verification outcome. I formalize such an algorithm in the next section. The algorithm
is constrained to find simple conflicts to have a bound for its complexity and a bound
for the size of the extended encoding formula which is desirable in practice. However,
different and more complicated algorithms looking for complicated cycles could also be
used theoretically, and their correctness would also be guaranteed by Theorem 5.

5.4.2 Bounded Cycles in the Potential Happens-Before Relation

My proposed algorithm looks for potential conflicts, loops in the potential happens-before
relation with the basic structures depicted in Figure 5.4. A po-rf-po edge means that it
could be replaced by at most one rf and optional po edges before or after this rf . Formally,
e1 <po-rf-po e2 if e1 <po e2 or there are events e′

1, e
′
2 such that e1 <po e

′
1 <rf e

′
2 <po e2.

To put it simple, the algorithm looks for potential conflicts that may be derived from
an rf , a ws, or an fr and another rf or some po relations. Algorithm 3 describes the
algorithm used to find potential conflicts before SMT solving. I abuse the notation by
writing w′ <ws w <po-rf-po w

′ for example to denote the self-loop w′ < w′.
Looking at Algorithm 3 or the visualization from Figure 5.4, it is straightforward that
Algorithm 3 indeed finds self-loops in <. Thus, it is safe to use this algorithm for opti-
mization based on Theorem 5. The impact of the algorithm on verification performance
is revealed in Section 5.5.
Finding these simple conflicts is polynomial in the number of program events. The com-
plexity of the proposed algorithm for finding these simple conflicts is O(n2 ·m) where n
is the size of the <rf relation (the number of potentially rf-related event pairs which is at
most quadratic in the number of events) and m is the number of write events in the pro-
gram. Naturally, n2 ·m is a gross overestimate in most cases since the foreach loop of line
6 only iterates over write events belonging to the same memory location as the rf-relation
of the outer loop. The size of the encoding formula is increased with a similar complexity
by adding the discovered conflict clauses. Evaluation shows however that adding these
clauses accelerates the SMT decision procedure.

58

r

w

rf
po-rf-po↺

(a) Conflict with rf

ws

po-rf-po

w'

r

w

rf

po-rf-po↺

(b) Conflict with ws

fr

po-rf-po

w'

r

w

rf

po-rf-po
↺

(c) Conflict with fr

Figure 5.4: Conflicts with basic structures

Algorithm 3: Finding simple conflicts
1 conflicts ← {}
2 foreach w <rf r do
3 foreach w′ <rf r

′ do
4 if r′ <po w and r <po w

′ then
5 conflicts ← conflicts ∪ {w <rf r <po w

′ <rf r
′ <po w} // Fig. 5.4a

6 end
7 end
8 foreach w′ that may write the same memory location as w do
9 if w′ <po-rf-po r ∧ w <po-rf-po w

′ then
10 conflicts ← conflicts ∪ {w′ <ws w <po-rf-po w

′} // Fig. 5.4b
11 conflicts ← conflicts ∪ {r <fr w

′ <po-rf-po r} // Fig. 5.4c
12 end
13 end
14 end

5.5 Experimental Evaluation

In this section, I evaluate the efficiency of my automatic conflict detection optimization
for partial order-based verification of concurrent software.
Benchmark tests were executed on virtual machines in the cloud computing platform of our
university with Intel Core (Skylake) processors. Three dedicated CPU cores were allocated
to each task. Each verification task had a time limit of 900 seconds and a memory limit
of 15GB.
The goal of my experiments is to analyze the impact of strengthening the encoding formula
by generated conflicts described in Section 5.4 on the overall verification performance. To
have a broader image of how my algorithm helps existing techniques, I implemented two
different methods for partial order-based verification. My first implementation resembles
the approach of [87] where the initial encoding formula does not contain all scheduling
constraints and the formula is gradually refined when the SMT solver finds a conflicting
assignment. My second implementation follows the scheme described in Section 5.3 with
a dedicated ordering consistency theory solver integrated into Z3 [41] via user propagators
[31]. I refer to these versions as BASIC and PROP (short for propagator), respectively. I

59

implemented7 these proof-of-concept solutions in the Theta verification framework which
could already parse C programs into control-flow automata [83].

5.5.1 Research Questions and Experiment Setup

I aim to answer the following questions for the evaluation of my technique:

RQ5.1 How many (simple) conflicts are found by my algorithm and how does this reduce
the number of conflicts occurring during the decision procedure?

RQ5.2 What is the impact of further constraining the encoding formula on the size of
the SMT solver model search space?

RQ5.3 What is the computational overhead of finding conflicts? In turn, how is the SMT
solving time and the overall verification time reduced?

RQ5.4 How does the performance of my solution compare to the state-of-the-art?

I executed different configurations of Theta over the subset of input programs written in
C from the concurrency safety reachability category benchmark suite8 of SV-COMP [20]
(715 tasks) that is parsable by Theta and supported by the partial-order based analysis:
544 tasks in total. The configurations are the two baseline implementations (BASIC and
PROP), and the optimized versions (BASIC+OPT and PROP+OPT). For RQ5.4, I compare my
solution to Deagle [62], a state-of-the-art bounded model checker built on CBMC based
on the preventive propagation algorithm of [82], winner of the concurrency category of
SV-COMP 2023 [19]. Deagle is shown to outperform other bounded model checkers,
therefore I only compare to Deagle [82, 19]. I apply loop unwinding for programs with
loops as a standard technique in bounded model checking. If the number of loop iterations
can be statically decided, the loop is unwinded according to this number. Otherwise, loops
are unrolled up to two iterations (in such cases, only a bounded proof of safety may be
obtained). This loop unwinding tactic allows a fair comparison with Deagle applying
the same method [62].

5.5.2 Experiment Results

Table 5.1 shows the results for the most important metrics of the evaluation. Each con-
figuration produced bounded proofs for two or three more tasks where the tasks are in
fact unsafe beyond the loop unroll bound. However, I excluded these cases from the
statistics where the bounded verdict differs from the unbounded verdict. Except for the
number of solved tasks, the values in the table are average values per task aggregated for
the commonly solved tasks per algorithm type (508 tasks commonly solved by the BASIC
configurations and 512 by the PROP configurations). The first two columns show relevant
metrics to the end-user: number of verified programs and the overall CPU time. The next
two columns contain information about the decision procedures on the level of reasoning
about partial orders: first the number of propagated (in case of PROP) or refinement (in
case of BASIC) clauses, then the time taken by the SMT solver are listed. Finally, the
last three columns give an intuition of the size of the search space explored by the SMT
solver. I interpret these figures along with further statistics from the benchmark tests by
answering the research questions.

7https://github.com/csanadtelbisz/theta/tree/xcfa-oc-ws
8https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

60

https://github.com/csanadtelbisz/theta/tree/xcfa-oc-ws
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/2fa025c8cb683e5991b2bbdb057e4cb328700dc0

algorithm solved
tasks

CPU
time

prop./ref.
clauses

Solver
time

Z3 inner
decisions

Z3 inner
propagations

Z3 inner
restarts

BASIC 510 24.4s 548 15.5s 117539 1019525 8.35
BASIC+OPT 517 14.2s 223 5.5s 28074 289943 1.20

PROP 514 22.8s 1017 15.1s 16886 301890 6.83
PROP+OPT 520 15.8s 599 7.3s 9203 243810 5.36

Table 5.1: Different metrics of the evaluation of the optimized verification algorithm

RQ5.1 An average of 1125.7 conflicts are detected by our proposed method per task on
the subset of commonly solved tasks of all configurations. Out of this, there are 514.5
conflicts with the structure of Figure 5.4a and 611.2 conflicts following Figure 5.4b
or Figure 5.4c on average (note that we have the same number of Figure 5.4b and
Figure 5.4c conflicts based on Algorithm 3). Strengthening the encoding formula
with these conflict clauses found before starting the SMT solving procedure greatly
reduces the number of conflict clauses produced by the decision procedures (see
Table 5.1): the number of refinement clauses produced by the BASIC configurations
is reduced by an average of 59.3% while the number of propagated conflict clauses
by PROP is reduced by 41.1%. Note that more conflicts are generated the new way
(simple conflicts discovered by my method and the conflicts generated by the decision
procedures) than the original decision procedures produce, however this verbosity
positively affects the performance of SMT solving.

RQ5.2 Various statistic data provided by Z3 can give us a rough estimate of the impact
of my algorithm on the solver search space. The last columns of Table 5.1 show
the average number of decision points, performed (unit and binary) propagation
operations and necessary restarts. These numbers refer to inner Z3 operations (i.e.,
not the number of conflict clause propagations by PROP for instance). For the exact
interpretation of these concepts, I refer the interested reader to a book on SMT [17]
or the Z3 code base9. For the purposes of this evaluation, it is enough to see that the
number of these important operations are substantially reduced indicating that the
search space becomes much smaller when my algorithm is used. These values are
reduced by 70-85% for the BASIC algorithm and by 20-45% for the PROP algorithm.
Note that PROP working with a theory solver already achieves a huge reduction in
the search space compared to BASIC (which is no surprise based on the paper of Sun
et al. [82]); my proposed algorithm can still perform a significant further reduction
for PROP.

RQ5.3 The runtime overhead of my conflict generation algorithm is not substantial, often
negligible: it is around 0.6 seconds per task on average which means less than 5% of
all CPU time. In turn, the time of the SMT solving procedure and thus the overall
verification time is significantly reduced: using my optimization the SMT solver is
64.9% faster in case of the BASIC algorithm, and 51.4% faster in case of PROP. The
overall CPU time of the verification is reduced by a significant 41.7% for BASIC and
30.7% for PROP on average. The CPU times are also demonstrated in the scatter
plots of Figure 5.5 where the majority of points are under the diagonal indicating
the performance improvement of my proposed technique.

9https://github.com/Z3Prover/z3

61

https://github.com/Z3Prover/z3

101 102

NONE

101

102

RF
W

SF
R

BASIC

101 102 103

NONE

101

102

103

RF
W

SF
R

PROPAGATOR

Figure 5.5: CPU time improvement of the optimized verification

RQ5.4 Firstly, I note that I do not intend to compete with Deagle in terms of absolute
performance (CPU time) as my proof-of-concept implementation runs on the JVM
while Deagle is built on native CBMC code optimized over decades. Having said
that, my evaluation shows that my solution with the best configuration (PROP algo-
rithm working with similar principles as Deagle extended with my optimization)
could verify as much tasks as Deagle: 520 tasks. Levelling with a verifier with a
highly optimized codebase clearly shows the potential of my contributions. Further-
more, my solution could produce bounded proofs for two more tasks where the tasks
are in fact unsafe beyond the loop unroll bound. Deagle is shown to outperform
other state-of-the-art bounded model checkers and no other published results surpass
Deagle [82, 19, 20] which implies that my solution also outperforms other existing
tools. It is also important to note that Deagle is limited to verification under weak
sequential consistency (see the supplement material) while my solution is suitable
for the stronger and more useful sequential consistency memory model.

In summary, I can conclude that my solution and implementation advances the state-of-
the-art in bounded model checking multi-threaded programs.

5.5.3 Threats to Validity

The validity of my experiments may be influenced by the following factors.

Internal validity. Consistency and accuracy of the experiments were insured by using
the BenchExec framework [28]. I executed my experiments on virtual machines in a cloud
computing platform. Therefore, external factors such as loads on other virtual machines
of the host environment and shared resources (such as disks) may have slightly influenced
the results.

External validity. The SV-COMP benchmark suite is considered a de facto standard
for academic benchmarking of software verification algorithms. Still, evaluation results
might not generalize well to real-life industrial programs. To justify the impact of my
proposed algorithm more thoroughly, I implemented and tested my extension to the verifier
algorithm with two state-of-the-art baseline approaches.

62

Construct validity. The metrics of the evaluation were carefully chosen to accurately
describe the performance of my algorithm: both end-user statistics (such as overall CPU
time, number of solved tasks) and backend-related information (such as the number of
conflicts and the solver search space) were used. Therefore, these metrics accurately
represent the expected outcomes of the executions.
Furthermore, I would like to note that in my comparative evaluation I used the binary
of Deagle submitted to SV-COMP 2024 [20]. I also tried to reproduce the results by
building the binary of Deagle from its source code10 but I failed to get the same results
as several incorrect verdicts (both false positives and negatives) were produced by this
version. However, if Deagle is indeed only capable of the slightly worse results, that
only affects the placement of my solution among state-of-the-art techniques positively.
Thus, this is only a positive threat to the validity of my evaluation.

5.6 Related Work

In the 2010s, Alglave et al. introduced partial order-based symbolic approaches for model
checking multi-threaded programs [8]. Early works using partial orders typically include
all scheduling constraints in the encoding formula. Each memory event is associated
with a clock value, and scheduling constraints are formulated in integer difference logic.
Alternative solutions use the theory of partial strings for describing partial order con-
straints [65, 66].
Later, several improvements have been developed for these approaches lazily encoding
the scheduling constraints. Yin et al. developed an abstraction-refinement method for
gradually refining the encoding formula starting without scheduling constraints [87]. He
et al. proposed a dedicated theory solver integrated into the SMT solver Z3 [41] for
reasoning about scheduling constraints [61]. The theory solver is able to perform value
propagation and to detect conflicts based on the partial variable assignment of the SMT
solver. They also reduce the size of the encoding formula as some constraints can be
replaced by reasoning in the theory solver. An improved preventive propagation algorithm
is introduced by Sun et al. [82]. Their algorithm is able to detect conflicts even before
the SMT solver reaches a partial variable assignment implying the conflict; the theory
solver prevents conflicting variable assignments by propagating some necessary preventive
clauses. In fact, whenever only one related event pair is missing from a cycle, their solution
already detects the cycle and excludes it by a corresponding clause.
While many of these algorithms assume a sequential consistency memory model, extending
partial order-based reasoning to weak memory models has long been researched as well [7,
38, 82]. Recently, Haas et al. proposed a theory with a theory solver for specifying and
handling general memory consistency models [55] with several optimizations [56]. The
presented approaches serve as the base algorithms of successful bounded model checkers
for concurrent software [62, 87, 39].
Using a dedicated theory solver already significantly constrains the SMT solver during
exploring the search space of the formula for a satisfying model [61, 82]. However, the
SMT solver may still explore redundant branches of the search space and backtrack unnec-
essarily with these techniques, since the conflicts are only detected (or prevented) when a
corresponding partial variable assignment is reached by the SMT solver. Even the preven-
tive propagation algorithm of Sun et al. [82] is only one step ahead: it can only infer one
missing partial order for a conflict, so the other elements of the happens-before relation

10https://github.com/thufv/Deagle

63

https://github.com/thufv/Deagle

leading to a cycle still needs to be justified by a corresponding variable assignment. On
the other hand, my proposed technique prevents many conflicts right from the beginning.
Thus, we can say that my method is even more preventive than the algorithm described
in [82]. As my experiments reveal, the clauses obtained from these simple conflicts are
often completely instructive for the SMT solver in the sense that only a few or no further
propagation steps have to be performed by the theory solver if my proposed optimization
is used.
Reasoning with over- or under-approximations of happens-before relations have been used
by several works [9, 49, 56]. These approximations are useful for enhancing the encoding
formula, though these enhancements typically try to reduce the formula by removing
unnecessary or lazily computable constraints. My approach on the other hand adds new
constraints to the formula.

64

Chapter 6

Conclusion

For Thesis I, Chapter 3 presented and proved the soundness of a generic way of integrating
partial order reduction techniques with abstraction-based analyses. The soundness of an
abstraction-aware POR algorithm is nontrivial, demonstrated by the proofs in Section 3.2.
While such dual approaches have been implemented in the past [33, 85, 45], the close
integration of the two techniques may lead to vastly enhanced performance, as testified by
the program in Figure 3.2. Practical experimentation showed that this advantage is slightly
diminished on conventional multi-threaded programs. Yet, the decreased verification times
and the explored state space size clearly show the proposed approach’s benefits.
For Thesis II, I presented a novel statement reduction algorithm in Chapter 4 based on
dynamic data-flow analysis to aid abstract state space exploration of concurrent programs.
My method is based on a similar idea to cone-of-influence algorithms. However, my al-
gorithm performs a more fine-grained analysis, resulting in a more extensive reduction
of model elements. I have proven its correctness and discussed its integration into the
abstraction-based verification algorithm CEGAR. The evaluation of the algorithm shows
that my approach can simplify or completely eliminate a great proportion of statements,
which leads to a significant improvement in both successor state calculation time and over-
all verification time, especially in cases where successor state calculation takes a significant
proportion of verification time, such as in the case of predicate abstraction.
For Thesis III, I proposed an optimization based on discovering potential scheduling in-
consistencies. I reason with an over-approximation of happens-before relations on the
level of the whole program. My algorithm strengthens the program encoding formula by
finding scenarios conflicting with concurrent behavior and converting these into first-order
clauses. Since I limit the algorithm to discover cycles of bounded size, it does not pose
a serious computational overhead on building the encoding formula. The presented ap-
proach can be conveniently integrated into existing methods to reduce the search space of
SMT solvers and accelerate the decision procedure. Thus, my algorithm effectively finds
the trade-off between preserving helpful information in the encoding formula and decreas-
ing its size. Evaluation reveals a significant boost in verification performance and shows
that my solution levels with state-of-the-art verification tools.
Concluding the thesis, the presented algorithms improve the performance of multi-
threaded program verification. Therefore, the presented techniques are worth considering
by developers of concurrency-focused verification tools as part of their analysis portfo-
lios, especially if they already include abstraction-based and partial order reduction-based
analyses (for Theses I and II) or a partial order-based analysis (for Thesis III), allowing
for a relatively easy implementation of the proposed approaches.

65

Acknowledgements

This thesis project could not achieve the results described in the thesis without the help,
mentoring, and valuable feedback of my thesis advisor Levente Bajczi as well as my two
other supervisors Dániel Szekeres and András Vörös. Thank you for your support and
guidance throughout my Master’s degree program.
Project no. EKÖP-24-2-BME-118 has been implemented with the support provided by the
Ministry of Culture and Innovation of Hungary from the National Research, Development
and Innovation Fund, financed under the EKÖP-24-2 funding scheme.
This research was partially funded by the Doctoral Excellence Fellowship Programme
(funded by the NRDI Fund of Hungary and the BME University).

66

List of Figures

1.1 Formal Verification with Witness Validation. 7

2.1 CFA of a multi-threaded program . 11
2.2 The CEGAR-loop . 13
2.3 CEGAR counterexamples . 14

3.1 Syntactically independent actions that are not commutative in the abstract
state space . 16

3.2 Motivational example for possible exponential gain 17
3.3 Abstract trace with a partial concretization 20
3.4 Example of a partially infeasible abstract trace 21
3.5 Variables of states in the proof of Theorem 1. 23
3.6 Execution time given i for N := 2i in Figure 3.2. 31

4.1 Running example (pseudocode of the example in Figure 2.1) 35
4.2 CFA of two processes and data-flow graphs with different precisions 37
4.3 Execution time given i for N := 2i in Figure 3.2 43

5.1 Verification with Partial Orders . 48
5.2 Deriving Happens-Before Relations . 50
5.3 Running example . 51
5.4 Conflicts with basic structures . 59
5.5 CPU time improvement of the optimized verification 62

67

Bibliography

[1] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.
Optimal dynamic partial order reduction. pages 373–384. ACM, 2014. DOI:
10.1145/2535838.2535845.

[2] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.
Comparing Source Sets and Persistent Sets for Partial Order Reduction. volume
10460 of Lecture Notes in Computer Science, pages 516–536. Springer, 2017. DOI:
10.1007/978-3-319-63121-9_26.

[3] Parosh Aziz Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas.
Source Sets: A Foundation for Optimal Dynamic Partial Order Reduction. J. ACM,
64(4):25:1–25:49, 2017. DOI: 10.1145/3073408.

[4] Pratyush Agarwal, Krishnendu Chatterjee, Shreya Pathak, Andreas Pavlogiannis,
and Viktor Toman. Stateless model checking under a reads-value-from equivalence.
volume 12759 of Lecture Notes in Computer Science, pages 341–366. Springer, 2021.
DOI: 10.1007/978-3-030-81685-8_16.

[5] Hiralal Agrawal and Joseph Robert Horgan. Dynamic program slicing. pages 246–256.
ACM, 1990. DOI: 10.1145/93542.93576.

[6] Elvira Albert, Puri Arenas, Maria Garcia de la Banda, Miguel Gómez-Zamalloa,
and Peter J. Stuckey. Context-Sensitive Dynamic Partial Order Reduction. volume
10426 of Lecture Notes in Computer Science, pages 526–543. Springer, 2017. DOI:
10.1007/978-3-319-63387-9_26.

[7] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. Fences in weak memory
models (extended version). Formal Methods Syst. Des., 40(2):170–205, 2012. DOI:
10.1007/S10703-011-0135-Z.

[8] Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders for
efficient bounded model checking of concurrent software. volume 8044 of
Lecture Notes in Computer Science, pages 141–157. Springer, 2013. DOI:
10.1007/978-3-642-39799-8_9.

[9] Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. Don’t sit
on the fence - A static analysis approach to automatic fence insertion. volume
8559 of Lecture Notes in Computer Science, pages 508–524. Springer, 2014. DOI:
10.1007/978-3-319-08867-9_33.

[10] Stavros Aronis, Bengt Jonsson, Magnus Lång, and Konstantinos Sagonas. Op-
timal Dynamic Partial Order Reduction with Observers. volume 10806 of
Lecture Notes in Computer Science, pages 229–248. Springer, 2018. DOI:
10.1007/978-3-319-89963-3_14.

68

http://dx.doi.org/10.1145/2535838.2535845
http://dx.doi.org/10.1007/978-3-319-63121-9_26
http://dx.doi.org/10.1145/3073408
http://dx.doi.org/10.1007/978-3-030-81685-8_16
http://dx.doi.org/10.1145/93542.93576
http://dx.doi.org/10.1007/978-3-319-63387-9_26
http://dx.doi.org/10.1007/S10703-011-0135-Z
http://dx.doi.org/10.1007/978-3-642-39799-8_9
http://dx.doi.org/10.1007/978-3-319-08867-9_33
http://dx.doi.org/10.1007/978-3-319-89963-3_14

[11] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and Madanlal
Musuvathi. On the verification problem for weak memory models. pages 7–18. ACM,
2010. DOI: 10.1145/1706299.1706303.

[12] David Baelde, Stéphanie Delaune, and Lucca Hirschi. Partial Order Reduction for
Security Protocols. CoRR, abs/1504.04768, 2015.

[13] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,
2008. ISBN 978-0-262-02649-9.

[14] Daniel Baier, Dirk Beyer, Po-Chun Chien, Marek Jankola, Matthias Kettl, Nian-
Ze Lee, Thomas Lemberger, Marian Lingsch Rosenfeld, Martin Spiessl, Henrik Wa-
chowitz, and Philipp Wendler. Cpachecker 2.3 with strategy selection - (competition
contribution). volume 14572 of Lecture Notes in Computer Science, pages 359–364.
Springer, 2024. DOI: 10.1007/978-3-031-57256-2_21.

[15] Levente Bajczi, Csanád Telbisz, Márk Somorjai, Zsófia Ádám, Mihály Dobos-
Kovács, Dániel Szekeres, Milán Mondok, and Vince Molnár. Theta: Abstrac-
tion based techniques for verifying concurrency (competition contribution). volume
14572 of Lecture Notes in Computer Science, pages 412–417. Springer, 2024. DOI:
10.1007/978-3-031-57256-2_30.

[16] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and Cartesian Ab-
straction for Model Checking C Programs. volume 2031 of Lecture Notes in Computer
Science, pages 268–283. Springer, 2001. DOI: 10.1007/3-540-45319-9_19.

[17] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Sat-
isfiability modulo theories. volume 336 of Frontiers in Artificial Intelligence and
Applications, pages 1267–1329. IOS Press, 2021. DOI: 10.3233/FAIA201017.

[18] Sergey Berezin, Sérgio Vale Aguiar Campos, and Edmund M. Clarke. Compositional
Reasoning in Model Checking. volume 1536 of Lecture Notes in Computer Science,
pages 81–102. Springer, 1997. DOI: 10.1007/3-540-49213-5_4.

[19] Dirk Beyer. Competition on software verification and witness validation: SV-COMP
2023. volume 13994 of Lecture Notes in Computer Science, pages 495–522. Springer,
2023. DOI: 10.1007/978-3-031-30820-8_29.

[20] Dirk Beyer. State of the art in software verification and witness validation: SV-COMP
2024. volume 14572 of Lecture Notes in Computer Science, pages 299–329. Springer,
2024. DOI: 10.1007/978-3-031-57256-2_15.

[21] Dirk Beyer and Karlheinz Friedberger. A Light-Weight Approach for Verifying Multi-
Threaded Programs with CPAchecker. volume 233 of EPTCS, pages 61–71, 2016.
DOI: 10.4204/EPTCS.233.6.

[22] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A Tool for Configurable Software
Verification. volume 6806 of Lecture Notes in Computer Science, pages 184–190.
Springer, 2011. DOI: 10.1007/978-3-642-22110-1_16.

[23] Dirk Beyer and Stefan Löwe. Explicit-Value Analysis Based on CEGAR and Inter-
polation. CoRR, abs/1212.6542, 2012.

[24] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software
model checker Blast. Int. J. Softw. Tools Technol. Transf., 9(5-6):505–525, 2007. DOI:
10.1007/s10009-007-0044-z.

69

http://dx.doi.org/10.1145/1706299.1706303
http://dx.doi.org/10.1007/978-3-031-57256-2_21
http://dx.doi.org/10.1007/978-3-031-57256-2_30
http://dx.doi.org/10.1007/3-540-45319-9_19
http://dx.doi.org/10.3233/FAIA201017
http://dx.doi.org/10.1007/3-540-49213-5_4
http://dx.doi.org/10.1007/978-3-031-30820-8_29
http://dx.doi.org/10.1007/978-3-031-57256-2_15
http://dx.doi.org/10.4204/EPTCS.233.6
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/s10009-007-0044-z

[25] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable Software
Verification: Concretizing the Convergence of Model Checking and Program Analysis.
volume 4590 of Lecture Notes in Computer Science, pages 504–518. Springer, 2007.
DOI: 10.1007/978-3-540-73368-3_51.

[26] Dirk Beyer, M. Erkan Keremoglu, and Philipp Wendler. Predicate abstraction with
adjustable-block encoding. pages 189–197. IEEE, 2010.

[27] Dirk Beyer, Matthias Dangl, and Philipp Wendler. A Unifying View on SMT-
Based Software Verification. J. Autom. Reason., 60(3):299–335, 2018. DOI:
10.1007/s10817-017-9432-6.

[28] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: require-
ments and solutions. Int. J. Softw. Tools Technol. Transf., 21(1):1–29, 2019. DOI:
10.1007/s10009-017-0469-y.

[29] Armin Biere. Bounded model checking. volume 336 of Frontiers in Artificial Intelli-
gence and Applications, pages 739–764. IOS Press, 2021. DOI: 10.3233/FAIA201002.

[30] Per Bjesse. What is Formal Verification? SIGDA Newsl., 35(24):1–es, dec 2005. ISSN
0163-5743. DOI: 10.1145/1113792.1113794.

[31] Nikolaj S. Bjørner, Clemens Eisenhofer, and Laura Kovács. Satisfiability modulo
custom theories in Z3. volume 13881 of Lecture Notes in Computer Science, pages
91–105. Springer, 2023. DOI: 10.1007/978-3-031-24950-1_5.

[32] Nicolas Blanc and Daniel Kroening. Race analysis for systemc using model check-
ing. ACM Trans. Design Autom. Electr. Syst., 15(3):21:1–21:32, 2010. DOI:
10.1145/1754405.1754406.

[33] Alessandro Cimatti, Iman Narasamdya, and Marco Roveri. Software Model Checking
with Explicit Scheduler and Symbolic Threads. Log. Methods Comput. Sci., 8(2),
2012. DOI: 10.2168/LMCS-8(2:18)2012.

[34] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. J. ACM,
50(5):752–794, 2003. DOI: 10.1145/876638.876643.

[35] Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo Zuliani. Model
Checking and the State Explosion Problem. volume 7682 of Lecture Notes in Com-
puter Science, pages 1–30. Springer, 2011. DOI: 10.1007/978-3-642-35746-6_1.

[36] Alex Coto, Omar Inverso, Emerson Sales, and Emilio Tuosto. A prototype
for data race detection in cseq 3 - (competition contribution). volume 13244
of Lecture Notes in Computer Science, pages 413–417. Springer, 2022. DOI:
10.1007/978-3-030-99527-0_23.

[37] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. An efficient method of computing static single assignment form. pages 25–35.
ACM Press, 1989. DOI: 10.1145/75277.75280.

[38] Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. Porta-
bility analysis for weak memory models. PORTHOS: one tool for all models. volume
10422 of Lecture Notes in Computer Science, pages 299–320. Springer, 2017. DOI:
10.1007/978-3-319-66706-5_15.

70

http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/s10817-017-9432-6
http://dx.doi.org/10.1007/s10009-017-0469-y
http://dx.doi.org/10.3233/FAIA201002
http://dx.doi.org/10.1145/1113792.1113794
http://dx.doi.org/10.1007/978-3-031-24950-1_5
http://dx.doi.org/10.1145/1754405.1754406
http://dx.doi.org/10.2168/LMCS-8(2:18)2012
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1007/978-3-642-35746-6_1
http://dx.doi.org/10.1007/978-3-030-99527-0_23
http://dx.doi.org/10.1145/75277.75280
http://dx.doi.org/10.1007/978-3-319-66706-5_15

[39] Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. Dartag-
nan: Bounded model checking for weak memory models (competition contribution).
volume 12079 of Lecture Notes in Computer Science, pages 378–382. Springer, 2020.
DOI: 10.1007/978-3-030-45237-7_24.

[40] Hernán Ponce de León, Thomas Haas, and Roland Meyer. Dartagnan: Leveraging
compiler optimizations and the price of precision (competition contribution). volume
12652 of Lecture Notes in Computer Science, pages 428–432. Springer, 2021. DOI:
10.1007/978-3-030-72013-1_26.

[41] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver.
volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.
DOI: 10.1007/978-3-540-78800-3_24.

[42] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Satisfiability modulo the-
ories: introduction and applications. Commun. ACM, 54(9):69–77, 2011. DOI:
10.1145/1995376.1995394.

[43] Daniel Dietsch, Matthias Heizmann, Dominik Klumpp, Frank Schüssele, and Andreas
Podelski. Ultimate taipan and race detection in ultimate - (competition contribution).
volume 13994 of Lecture Notes in Computer Science, pages 582–587. Springer, 2023.
DOI: 10.1007/978-3-031-30820-8_40.

[44] Matthew B. Dwyer and Lori A. Clarke. Data Flow Analysis for Verifying Properties
of Concurrent Programs. pages 62–75. ACM, 1994. DOI: 10.1145/193173.195295.

[45] Azadeh Farzan, Dominik Klumpp, and Andreas Podelski. Stratified Commutativity
in Verification Algorithms for Concurrent Programs. Proc. ACM Program. Lang., 7
(POPL):1426–1453, 2023. DOI: 10.1145/3571242.

[46] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model
checking software. pages 110–121. ACM, 2005. DOI: 10.1145/1040305.1040315.

[47] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software verification.
pages 191–202. ACM, 2002. DOI: 10.1145/503272.503291.

[48] Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and
Cesare Tinelli. DPLL(T): fast decision procedures. volume 3114 of Lec-
ture Notes in Computer Science, pages 175–188. Springer, 2004. DOI:
10.1007/978-3-540-27813-9_14.

[49] Natalia Gavrilenko, Hernán Ponce de León, Florian Furbach, Keijo Heljanko, and
Roland Meyer. BMC for weak memory models: Relation analysis for compact SMT
encodings. volume 11561 of Lecture Notes in Computer Science, pages 355–365.
Springer, 2019. DOI: 10.1007/978-3-030-25540-4_19.

[50] Phillip B. Gibbons and Ephraim Korach. Testing shared memories. SIAM J. Comput.,
26(4):1208–1244, 1997. DOI: 10.1137/S0097539794279614.

[51] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems
- An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in Com-
puter Science. Springer, 1996. ISBN 3-540-60761-7. DOI: 10.1007/3-540-60761-7.

[52] Patrice Godefroid. Model Checking for Programming Languages using Verisoft. pages
174–186. ACM Press, 1997. DOI: 10.1145/263699.263717.

71

http://dx.doi.org/10.1007/978-3-030-45237-7_24
http://dx.doi.org/10.1007/978-3-030-72013-1_26
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/1995376.1995394
http://dx.doi.org/10.1007/978-3-031-30820-8_40
http://dx.doi.org/10.1145/193173.195295
http://dx.doi.org/10.1145/3571242
http://dx.doi.org/10.1145/1040305.1040315
http://dx.doi.org/10.1145/503272.503291
http://dx.doi.org/10.1007/978-3-540-27813-9_14
http://dx.doi.org/10.1007/978-3-030-25540-4_19
http://dx.doi.org/10.1137/S0097539794279614
http://dx.doi.org/10.1007/3-540-60761-7
http://dx.doi.org/10.1145/263699.263717

[53] R. Govind, Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Abstractions
for the local-time semantics of timed automata: a foundation for partial-order meth-
ods. pages 24:1–24:14. ACM, 2022. DOI: 10.1145/3531130.3533343.

[54] Orna Grumberg, Edmund M. Clarke, and Doron A. Peled. Model checking. 1999.

[55] Thomas Haas, Roland Meyer, and Hernán Ponce de León. CAAT: consistency
as a theory. Proc. ACM Program. Lang., 6(OOPSLA2):114–144, 2022. DOI:
10.1145/3563292.

[56] Thomas Haas, René Pascasl Maseli, Roland Meyer, and Hernán Ponce de León.
Static analysis of memory models for SMT encodings. Proc. ACM Program. Lang., 7
(OOPSLA2):1618–1647, 2023. DOI: 10.1145/3622855.

[57] Ákos Hajdu and Zoltán Micskei. Efficient Strategies for CEGAR-based Model
Checking. Journal of Automated Reasoning, 64(6):1051–1091, 2020. DOI:
10.1007/s10817-019-09535-x.

[58] Henri Hansen. Abstractions for transition systems with applications to stubborn sets.
volume 10160 of Lecture Notes in Computer Science, pages 104–123. Springer, 2017.
DOI: 10.1007/978-3-319-51046-0_6.

[59] Henri Hansen, Shang-Wei Lin, Yang Liu, Truong Khanh Nguyen, and Jun Sun. Dia-
monds Are a Girl’s Best Friend: Partial Order Reduction for Timed Automata with
Abstractions. volume 8559 of Lecture Notes in Computer Science, pages 391–406.
Springer, 2014. DOI: 10.1007/978-3-319-08867-9_26.

[60] Mark Harman and Robert M. Hierons. An overview of program slicing. Softw. Focus,
2(3):85–92, 2001. DOI: 10.1002/swf.41.

[61] Fei He, Zhihang Sun, and Hongyu Fan. Satisfiability modulo ordering consistency
theory for multi-threaded program verification. pages 1264–1279. ACM, 2021. DOI:
10.1145/3453483.3454108.

[62] Fei He, Zhihang Sun, and Hongyu Fan. Deagle: An smt-based veri-
fier for multi-threaded programs (competition contribution). volume 13244 of
Lecture Notes in Computer Science, pages 424–428. Springer, 2022. DOI:
10.1007/978-3-030-99527-0_25.

[63] Matthias Heizmann, Max Barth, Daniel Dietsch, Leonard Fichtner, Jochen Hoenicke,
Dominik Klumpp, Mehdi Naouar, Tanja Schindler, Frank Schüssele, and Andreas
Podelski. Ultimate automizer and the commuhash normal form - (competition con-
tribution). volume 13994 of Lecture Notes in Computer Science, pages 577–581.
Springer, 2023. DOI: 10.1007/978-3-031-30820-8_39.

[64] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Software
Verification with BLAST. volume 2648 of Lecture Notes in Computer Science, pages
235–239. Springer, 2003. DOI: 10.1007/3-540-44829-2_17.

[65] Alex Horn and Jade Alglave. Concurrent kleene algebra of partial strings. CoRR,
abs/1407.0385, 2014. URL http://arxiv.org/abs/1407.0385.

[66] Alex Horn and Daniel Kroening. On partial order semantics for sat/smt-based sym-
bolic encodings of weak memory concurrency. volume 9039 of Lecture Notes in Com-
puter Science, pages 19–34. Springer, 2015. DOI: 10.1007/978-3-319-19195-9_2.

72

http://dx.doi.org/10.1145/3531130.3533343
http://dx.doi.org/10.1145/3563292
http://dx.doi.org/10.1145/3622855
http://dx.doi.org/10.1007/s10817-019-09535-x
http://dx.doi.org/10.1007/978-3-319-51046-0_6
http://dx.doi.org/10.1007/978-3-319-08867-9_26
http://dx.doi.org/10.1002/swf.41
http://dx.doi.org/10.1145/3453483.3454108
http://dx.doi.org/10.1007/978-3-030-99527-0_25
http://dx.doi.org/10.1007/978-3-031-30820-8_39
http://dx.doi.org/10.1007/3-540-44829-2_17
http://arxiv.org/abs/1407.0385
http://dx.doi.org/10.1007/978-3-319-19195-9_2

[67] Jeff Huang. Stateless model checking concurrent programs with maximal causality
reduction. pages 165–174. ACM, 2015. DOI: 10.1145/2737924.2737975.

[68] Dominik Klumpp, Daniel Dietsch, Matthias Heizmann, Frank Schüssele, Mar-
cel Ebbinghaus, Azadeh Farzan, and Andreas Podelski. Ultimate gemcutter
and the axes of generalization - (competition contribution). volume 13244
of Lecture Notes in Computer Science, pages 479–483. Springer, 2022. DOI:
10.1007/978-3-030-99527-0_35.

[69] Bogdan Korel and Jurgen Rilling. Dynamic program slicing methods. Information
and Software Technology, 40(11-12):647–659, 1998.

[70] Daniel Kroening, Subodh Sharma, and Björn Wachter. AbPress: Flexing Partial-
Order Reduction and Abstraction. CoRR, abs/1410.6044, 2014.

[71] Will Leeson and Matthew B Dwyer. Graves-cpa: A graph-attention verifier selector
(competition contribution). In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 440–445. Springer, 2022.

[72] Carmelo Loiacono, Marco Palena, Paolo Pasini, Denis Patti, Stefano Quer, Stefano
Ricossa, Danilo Vendraminetto, and Jason Baumgartner. Fast cone-of-influence com-
putation and estimation in problems with multiple properties. pages 803–806. EDA
Consortium San Jose, CA, USA / ACM DL, 2013. DOI: 10.7873/DATE.2013.170.

[73] Antoni W. Mazurkiewicz. Trace Theory. volume 255 of Lecture Notes in Computer
Science, pages 279–324. Springer, 1986. DOI: 10.1007/3-540-17906-2_30.

[74] Mangala Gowri Nanda and S. Ramesh. Slicing concurrent programs. pages 180–190.
ACM, 2000. DOI: 10.1145/347324.349121.

[75] William T. Overman and Stephen D. Crocker. Verification of Concurrent Systems:
Function and Timing. pages 401–409. North-Holland, 1982.

[76] Doron A. Peled. Ten Years of Partial Order Reduction. volume 1427 of Lecture Notes
in Computer Science, pages 17–28. Springer, 1998. DOI: 10.1007/BFb0028727.

[77] Ishai Rabinovitz and Orna Grumberg. Bounded model checking of concurrent pro-
grams. volume 3576 of Lecture Notes in Computer Science, pages 82–97. Springer,
2005. DOI: 10.1007/11513988_9.

[78] Cedric Richter, Eyke Hüllermeier, Marie-Christine Jakobs, and Heike Wehrheim. Al-
gorithm selection for software validation based on graph kernels. Autom. Softw. Eng.,
27(1):153–186, 2020. DOI: 10.1007/S10515-020-00270-X.

[79] Marcelo Sousa. Abstractions and independence. PhD thesis, University of Oxford,
UK, 2018. URL https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.780457.

[80] Jie Su, Cong Tian, Zuchao Yang, Jiyu Yang, Bin Yu, and Zhenhua Duan. Prioritized
Constraint-Aided Dynamic Partial-Order Reduction. pages 78:1–78:13. ACM, 2022.
DOI: 10.1145/3551349.3561159.

[81] Jie Su, Zuchao Yang, Hengrui Xing, Jiyu Yang, Cong Tian, and Zhenhua Duan.
Pichecker: A POR and interpolation based verifier for concurrent programs (com-
petition contribution). volume 13994 of Lecture Notes in Computer Science, pages
571–576. Springer, 2023. DOI: 10.1007/978-3-031-30820-8_38.

73

http://dx.doi.org/10.1145/2737924.2737975
http://dx.doi.org/10.1007/978-3-030-99527-0_35
http://dx.doi.org/10.7873/DATE.2013.170
http://dx.doi.org/10.1007/3-540-17906-2_30
http://dx.doi.org/10.1145/347324.349121
http://dx.doi.org/10.1007/BFb0028727
http://dx.doi.org/10.1007/11513988_9
http://dx.doi.org/10.1007/S10515-020-00270-X
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.780457
http://dx.doi.org/10.1145/3551349.3561159
http://dx.doi.org/10.1007/978-3-031-30820-8_38

[82] Zhihang Sun, Hongyu Fan, and Fei He. Consistency-preserving propagation for SMT
solving of concurrent program verification. Proc. ACM Program. Lang., 6(OOPSLA2):
929–956, 2022. DOI: 10.1145/3563321.

[83] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta:
a Framework for Abstraction Refinement-Based Model Checking. pages 176–179,
2017. ISBN 978-0-9835678-7-5. DOI: 10.23919/FMCAD.2017.8102257.

[84] Antti Valmari. Stubborn sets for reduced state space generation. volume 483
of Lecture Notes in Computer Science, pages 491–515. Springer, 1989. DOI:
10.1007/3-540-53863-1_36.

[85] Björn Wachter, Daniel Kroening, and Joël Ouaknine. Verifying multi-threaded soft-
ware with impact. pages 210–217. IEEE, 2013.

[86] Chao Wang, Zijiang Yang, Vineet Kahlon, and Aarti Gupta. Peephole Partial Or-
der Reduction. volume 4963 of Lecture Notes in Computer Science, pages 382–396.
Springer, 2008. DOI: 10.1007/978-3-540-78800-3_29.

[87] Liangze Yin, Wei Dong, Wanwei Liu, and Ji Wang. On scheduling constraint ab-
straction for multi-threaded program verification. IEEE Trans. Software Eng., 46(5):
549–565, 2020. DOI: 10.1109/TSE.2018.2864122.

[88] Rachid Zennou, Mohamed Faouzi Atig, Ranadeep Biswas, Ahmed Bouajjani, Con-
stantin Enea, and Mohammed Erradi. Boosting sequential consistency checking us-
ing saturation. volume 12302 of Lecture Notes in Computer Science, pages 360–376.
Springer, 2020. DOI: 10.1007/978-3-030-59152-6_20.

74

http://dx.doi.org/10.1145/3563321
http://dx.doi.org/10.23919/FMCAD.2017.8102257
http://dx.doi.org/10.1007/3-540-53863-1_36
http://dx.doi.org/10.1007/978-3-540-78800-3_29
http://dx.doi.org/10.1109/TSE.2018.2864122
http://dx.doi.org/10.1007/978-3-030-59152-6_20

	Kivonat
	Abstract
	Introduction
	Preliminaries
	Satisfiability Modulo Theories
	Representation
	Abstraction
	Common Abstract Domains
	Counterexample-Guided Abstraction Refinement

	Abstraction-Based Partial Order Reduction
	Preliminaries
	Partial Order Reduction

	Abstraction-Aware Partial Order Reduction
	Dependency relations
	Partial Feasibility
	Relaxed Partial Order Representation
	Source Sets for Abstraction-Aware Partial Order Reduction

	Static Abstraction-Aware Partial Order Reduction Algorithm
	Experiments
	Experiment Design
	Experimental Results
	Evaluation Summary
	Threats to Validity

	Related Work

	Abstract Data-Flow-Based Statement Reduction
	Statement Reduction during Dynamic Analysis
	Data-Flow Graph with Precision
	Simplifying Statements On-the-Fly Based on Data-Flow
	Statement Simplification with CEGAR

	Experimental Evaluation
	Research Questions
	Experimental Configuration
	Experiment Results
	Threats to Validity

	Related Work

	Verification with Partial Orders
	Weak Memory Models
	Partial Orders
	Verification with Partial Orders
	Symbolic Encoding of Multi-threaded Programs
	Ordering Consistency Theory

	Automatic Conflict Detection
	Over-Approximation of the Happens-Before Relation
	Bounded Cycles in the Potential Happens-Before Relation

	Experimental Evaluation
	Research Questions and Experiment Setup
	Experiment Results
	Threats to Validity

	Related Work

	Conclusion
	Acknowledgements
	List of Figures
	Bibliography

