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ABSTRACT
With the improvement of hardware and algorithms, the main chal-
lenge of software model checking has shifted from pure algorithmic
performance toward supporting a wider set of input programs. Suc-
cessful toolchains tackle the problem of parsing a wide range of
inputs in an efficient way by reusing solutions from existing com-
piler technologies such as Eclipse CDT or LLVM. Our experience
suggests that well-established techniques in compiler technology
are not necessarily beneficial to model checkers and sometimes
can even hurt their performance. In this paper, we review the tools
mature enough to participate in the Software Verification Competi-
tion in terms of the employed analysis and frontend techniques. We
find that successful tools do exhibit a bias toward certain combina-
tions. We explore the theoretical reasons and suggest an adaptable
approach for model checking frameworks. We validate our recom-
mendations by implementing a new frontend for a model checking
framework and show that it indeed benefits some of the algorithms.

CCS CONCEPTS
• Software and its engineering→ Software verification; Formal
software verification; • Theory of computation→ Parsing.
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1 INTRODUCTION
Formal verification of software with model checking has been evolv-
ing rapidly in the last decades, reaching a point where more and
more often it can be applied on non-trivial real-world problems
with acceptable performance. Many tools, however, suffer in an-
other critical aspect: parsing and interpreting real-world programs.
In the case of the C language, a wide range of language primitives,
data types, and the sometimes loose specification cause many of
the better tools to give up immediately during parsing the pro-
gram, or produce incorrect results due to a misunderstanding of
the specification.

More established software model checkers that are capable of
tackling a reasonable part of the tasks in the Software Verification
Competition (SV-COMP) [8] tend to solve the problem of parsing
the input programs by building on existing compiler or parser frame-
works (frontends). Most of these have been developed to compile
C code into some intermediate representation or byte code tuned
for efficient execution. Some of them (like LLVM – see Section 3.1)
are really popular and mature, mostly because they provide a lot of
optimizations and transformations that can simplify the program
and its representation. For this reason, it is very tempting to exploit
them in model checking as well, since one could expect that the
optimizations and simplifications will help in making the analysis
more efficient.

As the developers of a software model checking tool, we also
followed this path for a while. During this journey, we have accu-
mulated some experience on the pitfalls of this approach, mostly
resulting from the fact that compiler technologies were obviously
not optimized for producing outputs appealing to formal verifi-
cation tools. We learned that in some cases, transformations like
the one converting a program to Static Single Assignment (SSA)
form [39] in LLVMmay indeed help some algorithms, but will cause
serious issues to others.

This has motivated us to review the data available from SV-
COMP to see if developers of other tools have also faced this prob-
lem. We found that there is indeed a bias towards certain combina-
tions – most prominently, tools using abstraction-based algorithms
seem to avoid LLVM, while those based on boundedmodel checking
(BMC) seem to benefit from the services of the more sophisticated
compiler frameworks.

https://doi.org/10.1145/3524482.3527646
https://doi.org/10.1145/3524482.3527646
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In this paper, we present our findings as three key contributions:
1) we highlight the trend discovered among the SV-COMP competi-
tors, rhyming to our own experience; 2) we discuss the potential
theoretical and practical reasons behind these observations based
on characteristics of the employed algorithms and frontends and
specify requirements towards an ideal solution; 3) we validate our
results with an experiment where we develop a new, custom fron-
tend for our model checker tool and compare it to the original,
rather well-established LLVM-based solution both with regard to
abstraction-based and BMC-based algorithms. The result of the
experiment confirms that even with such a makeshift solution, the
performance of abstraction-based solutions can be increased signif-
icantly, although this approach voids the benefits of using compiler
frameworks to parse a larger subset of C programs.

We hope that our results will foster discussion in the community
about the best practices in the efficient development of software
model checking tools for C programs, or even serve as a call for
action to develop the analogue of tunable compiler frameworks for
formal verification tools, potentially building on one of the already
existing partial solutions.

The paper is structured as follows. In Section 2, we present the
necessary background on software model checking. In Section 3,
we examine the software verification tools and their choice of fron-
tend projects. In Section 4, we present a proposal for the design
of a verification-centric frontend framework, for which we also
evaluate a proof of concept implementation in Section 5. Finally,
we summarize our findings in Section 6.

2 SOFTWARE MODEL CHECKING
Model checking [21] is a mathematical method of verifying that
a formal model adheres to a formal specification. To achieve this,
the model checking algorithm will analyse the state space, i.e., the
set of all possible configurations exhibited by the model. An ex-
haustive enumeration of the state space is often not feasible due to
the phenomenon called state space explosion, which refers to the
number of states growing larger than practically manageable (or
even infinite). Therefore, model checking algorithms generally use
smart exploration strategies and heuristics, or a special encoding,
often coupled with abstraction.

In software model checking, the input is a program code instead
of a formal model. Even in this case, model checking needs a formal
representation of the specified behavior, as programming languages
tend to have ambiguities and complex structures that may help
the developers express themselves more concisely, but are hard to
handle in a low-level algorithm. To bridge the gap between formal
models and program code, developers of software model checking
toolchains use separate frontends before running the analysis (often
called backend in contrast), which transforms the input program
into a suitable formal model. In this paper, we use Control Flow
Automata (CFA) as the intermediate formalism, a representation
widely used in software model checkers [12].

Definition 2.1 (Control Flow Automaton). A CFA is a 4-tuple
(𝑉 , 𝐿, 𝐸, 𝑙0) [12], where

• 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is a set of variables with domains
𝐷𝑣1 , 𝐷𝑣2 , . . . , 𝐷𝑣𝑛 ,

• 𝐿 = {𝑙0, 𝑙1, 𝑙2, ...} is a set of locations, modeling the program
counter,

• 𝑙0 is the initial program location, the entry-point of the pro-
gram,

• 𝐸 ⊆ 𝐿×𝑂𝑝𝑠×𝐿 is a set of edges, which represent the executed
operations between two locations. 𝑂𝑝𝑠 can be:
– assignments (e.g., 𝑥 := 𝑦 + 2),
– assumptions (e.g., [𝑥 = 0]), or
– nondeterministic assignments, havocs (e.g., ℎ𝑎𝑣𝑜𝑐 𝑥 )

It is important to distinguish between locations and states of
a CFA. A state in the CFA consists of a location and a system of
constraints over the variables present in its operations. If such con-
straints are valuations that assign a value to each variable, then the
state is a concrete state. Otherwise, the state is an abstract state, cor-
responding to a number of concrete states for which the constraints
hold.

An execution of the input program corresponds to a concrete
trace, which is a series of concrete states and transitions in the
state space of the CFA. Observe that these traces can be projected
onto the graph induced by the locations and edges of the CFA to
get a directed path, which correspond to the execution of the re-
lated parts of the program. Similarly, an abstract trace is a series
of abstract states and transitions in some abstraction of the state
space, which also maps to the graph induced by the CFA. However,
abstract traces do not always represent executions of the program.
We say an abstract trace is feasible if applying the effects of the
transitions on each abstract state do not contradict the target ab-
stract state. Otherwise, the trace is infeasible. Feasibility depends
on the existence of a concrete trace which follows the same path as
the abstract trace, and each concrete state satisfies the constraints
of the corresponding abstract state.

Checking the feasibility of a trace can be formulated as an SMT
(Satisfiability Modulo Theories) query, which in turn can be eval-
uated by an SMT solver. As SMT formulae use constants rather
than variables, the trace needs to be transformed into a Static Single
Assignment (SSA) form [39]. An SSA form allows atmost one assign-
ment to each variable before its first use by further expressions, and
none thereafter. This makes variables effectively constants, making
them suitable for SMT expressions. To achieve this transformation,
we change the variables along the trace to indexed constants, based
on the current indexing of the variables. An indexing is a function
that maps indices (integers) to variables. Initially, all indices are 0,
and they gradually increase every time the corresponding variable
is assigned a new value. Therefore, assumptions can be automat-
ically used as SMT constraints with the current indexing, while
assignments can be transformed into an expression formulating the
equality of the next indexed constant of the left-hand side variable
with the expression on the right-hand side. Havocs only increase
the index of the variable, and do not constrain its value, as expected
from a nondeterministic assignment.

2.1 Reachability in the CFA
The goal of software model checking is to either produce a coun-
terexample contradicting the specification, or to prove that the
specification will always hold. In this paper, we assume that the
specification solely contains reachability queries, which designate
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(c) State space over predicate abstraction.

Figure 1: Concrete states are circles, rectangles denote abstract states, dashed rectangles are unreachable.

unsafe states in the state space of the input program. A counterex-
ample shows a feasible trace from an initial state to an unsafe state,
and a proof of safety needs to show that no unsafe state is ever
reachable. While in theory reachability queries can designate any
state unsafe, it is customary to further restrict this to unsafe locations
due to the specification often being given as assertions in the code.
Therefore, the CFA is extended with a predicate which partitions
the locations to a safe and an unsafe subset. If an execution reaches
a state that belong to an unsafe location (i.e., an unsafe state), then
the input program is unsafe; if there is no execution that can reach
an unsafe state then the input program is safe.

2.2 Approaches to Scalable Model Checking
As discussed earlier, enumerating all states and checking if an
unsafe state is reachable is not feasible due to the large number of
states. In this paper, we look at twowidely used solutions to the state
space explosion problem: Bounded Model Checking (BMC) [15] and
Counterexample-Guided Abstraction Refinement (CEGAR) [20] as
they are prevalent in software model checking.

2.2.1 BMC. The idea behind BMC is that the most common bugs
are reachable within the first 𝑘 steps of an executing program [15].
Therefore, the state space of the input model is explored only up
to a bound 𝑘 , and if an unsafe state is explored, the input model
can be considered erroneous without having to explore all possible
states. The disadvantage of the approach is that a proof of safety is
produced only if the diameter of the state space is at most 𝑘 .

There are extensions to this approach such as the application of k-
induction [10, 25], which in general still constrain the search space
but often yield better results. These techniques usually rely on SMT
solvers, encoding traces as SMT formulae in conjunction with the
formula describing the reachability query. The satisfaction of such
formula signifies a counterexample, while unsatisfiability means
there are no reachable error states within the given bound. When
applied to CFAs, the formula often consists of several descriptions
of traces along different paths in the CFA.

Other approaches in softwaremodel checking that are sometimes
labeled as BMC operate with loop unrolling, where loops of the
program are unrolled up to 𝑘 iterations and executions iterating
more than 𝑘 are not considered. The common feature of BMC

approaches is that they deal with finite traces and therefore do not
have to cope with potentially infinite iterations.

2.2.2 CEGAR. Abstraction-based methods aim to also provide a
way to prove safety without enumerating the entire state space.
Instead of covering a certain number of states explicitly, abstraction
is used to handle groups of states together, which may greatly re-
duce the number of abstract states in the (abstract) state space [20].
The rules that govern which concrete states shall be grouped to-
gether are called the precision of the abstraction. Transitions among
the abstract states are constructed in the following way: if any
two concrete states are connected via a transition in the concrete
state space, then the abstract states containing those states must
be connected via the same transition as well. This provides a safe
overapproximation, as every possible behavior observable in the
concrete state space is also observable in the abstract state space. If
an abstraction is found without a feasible trace to an unsafe state,
the original model must be safe as well [20]. However, a trace in
the abstract state space is not necessarily feasible over concrete
states. Therefore, an abstraction-based technique needs to have a
strategy to refine the abstraction until a precision is found with
which the abstract state space either contains a feasible trace (a
counterexample) or does not contain any abstract trace leading to
an error state.

To solve the problem of finding bugs, the abstraction needs to
be refined until such a precision is found that either contains no
path to an unsafe state (when the input model is safe) or a feasible
trace is found – in which case the input model is unsafe, and the
concrete trace serving as the proof of feasibility also serves as a
counterexample. Should a trace be found that is infeasible, a new
precision is necessary that distinguishes the concrete states which
caused the infeasible trace to appear. The method of continuously
constructing the abstract state space and then refining the precision
based on the infeasible counterexample is called Counterexample-
Guided Abstraction Refinement (CEGAR) [20].

Counterexample-Guided Abstraction Refinement (CEGAR) [20]
uses infeasible (or spurious) counterexamples to refine the abstrac-
tion iteratively. The goal of the refinement is to modify the precision
such that the spurious counterexample does not appear in the next
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CEGAR X X X
BMC X X X X X X X X X

Eclipse CDT X X
LLVM (optionally with Clang) X X X X X

SMACK (LLVM) X X
Cprover Framework (Goto-CC) X X X

Other X X X X

Table 1: The tools of SV-COMP 2021 and the analyses as well as frontend technologies they employ.

abstraction, which means that the new precision has to split an ab-
stract state. CEGAR uses the concept of abstract domains to govern
the types of rules the precision may have [30].

Definition 2.2 (Abstract Domain). An abstract domain is a tuple
𝐷 = (𝑆,⊤,⊥, ⊑, 𝑒𝑥𝑝𝑟 ) [30], where:

• 𝑆 : Lattice of abstract states (possibly infinite)
• ⊤ ∈ 𝑆 : Top element
• ⊥ ∈ 𝑆 : Bottom element
• ⊑ ⊆ 𝑆 × 𝑆 : Partial order over the lattice 𝑆
• 𝑒𝑥𝑝𝑟 : A mapping from an abstract state to a constraint on
the state variables (i.e., an expression)

For the purposes of this paper, we present two generally well-
performing domains that will be used in our experiment: explicit-
value abstraction and Cartesian predicate abstraction.

Explicit-Value Abstraction. The explicit abstraction domain de-
fines the precision as a set of tracked variables. Formally:

• ∀𝑠 ∈ 𝑆 : A variable assignment of each tracked variable to a
value of its domain, extended with top (arbitrary value) and
bottom (no assignment possible) elements.

• ⊤ ∈ 𝑆 : No specific value is assigned to any of the tracked
variables.

• ⊥ ∈ 𝑆 : No assignment is possible to the tracked variables.
• ⊑ ⊆ 𝑆 × 𝑆 : 𝑠1 ⊑ 𝑠2 ⇐⇒ (𝑠1 = 𝑠2) ∨ (𝑠1 = ⊥) ∨ (𝑠2 = ⊤).
• 𝑒𝑥𝑝𝑟 : A conjunction of constraints binding the values of
tracked variables for each abstract state.

Predicate Abstraction. The Cartesian predicate abstraction do-
main defines the precision as a set of tracked predicates. Formally:

• ∀𝑠 ∈ 𝑆 : A conjunction of predicates or their negations.
• ⊤ ∈ 𝑆 : The predicate True.
• ⊥ ∈ 𝑆 : The predicate False.
• ⊑ ⊆ 𝑆 × 𝑆 : 𝑠1 ⊑ 𝑠2 ⇐⇒ (𝑠1 =⇒ 𝑠2).
• 𝑒𝑥𝑝𝑟 : A conjunction of the predicates or their negations
constituting the given state.

For practical reasons, locations are generally tracked explicitly
no matter what abstract domain is used. This helps the algorithms
track the possible transitions from an abstract state, as only the
outgoing edges of one location need to be explored.

For an example, consider Figure 1. The CFA in Figure 1a shows a
safe program, because intuitively no data state may exist that both
satisfy 𝑥 < 1 and 𝑥 > 2. However, an explicit analysis (with a limited

amount of memory) will never be able to enumerate all values of
𝑥 , because theoretically an infinite amount could exist – and even
practically, a single integer will have billions of possible values.
Therefore, as seen in Figure 1b, the explicit abstraction denotes
the data state as ⊤, meaning no information on 𝑥 is recorded. As
both L1 → L2 and L2 → Le exist among the concrete states, the
abstract error state will be reachable, albeit via an infeasible path. As
refinement is no longer possible (all variables are currently tracked),
the analysis cannot proceed to prove correctness.

In comparison, if a predicate abstraction-based analysis has
found the predicates 𝑥 < 1 and 𝑥 > 2, it can group the concrete
states into three partitions, as seen in Figure 1c. As none of the par-
titions consider Le reachable, the analysis can conclude the safety
of the input program.

3 ANALYSIS OF THE STATE OF THE ART
As our first contribution, we analyse the data available about the
tools that competed in SV-COMP 2021 [8] to identify the most com-
monly used frontend technologies for parsing C programs, pairing
this data with the software model checking strategies employed by
each tool (focusing on those discussed in Section 2).

On SV-COMP 2021 there were 30 participating tools, 6 of which
are Java verifiers, 2 are portfolio verifiers using other tools, and suf-
ficient information was not available about the tool Brick regarding
the employed frontend technology. Table 1 summarizes our findings
about the remaining 21 tools. Note that some tools are not shown
explicitly: CPA-BAM-BnB [2], CPALockator [3], CPAChecker [13]
are grouped as CPAChecker-based tools and UAutomizer [33], UKo-
jak [26] and UTaipan [29] are grouped under the Ultimate Family
column. ESBMC also has two separate variants, ESBMC-kind [27]
and ESBMC-incr [22], the latter of which is developed specifically
for the verification of multithreaded programs.

Section 3.1 gives an overview of the most prevalent frontend
technologies, while Section 3.2 provides our conclusions based on
the data.

3.1 Frontend Technologies
3.1.1 Eclipse CDT Parser. The Eclipse C/C++ Development Tooling
(Eclipse CDT) project1 provides a fully functional IDE for C/C++
development. Among the various features provided by this IDE are
the C and C++ parsers that are of primary interest when used as a
1https://www.eclipse.org/cdt/

https://www.eclipse.org/cdt/
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frontend for verification2. These parsers are available as standalone
components and can be used to generate Abstract Syntax Trees
(AST) [11], although using this feature in practice carries some
technical difficulties.

The tools using the Eclipse CDT parser are the CPAChecker-
based tools and the Ultimate tool family.

3.1.2 LLVM. The LLVM project3 [36] is a well-known collection of
different modular compiler technologies, supporting arbitrary pro-
gramming languages, but best known for C/C++ related tools and
modules. One of the most well-known features is the LLVM Inter-
mediate Representation (LLVM IR). LLVM IR is a human-readable,
typed assembly language and in-memory representation aiming to
provide type-safety and flexibility. It uses a Static Single Assignment
(SSA) representation.

The LLVM project provides a large set of passes, i.e., optimization
and transformation steps to be executed on LLVM IR. These opti-
mizations were created from a compiler’s standpoint, i.e. to make
the program run as efficiently as possible. Clang is the "LLVM-
native" C/C++ Compiler tool of the project, which uses the LLVM
Intermediate Representation (LLVM IR) with the various passes
and is capable of outputting the IR itself instead of an executable.

Tools using LLVM (with or without clang) are Divine [6], Sym-
biotic [18], ESBMC-incr [22] and ESBMC-kind [27], Frama-C [23],
and Gazer-Theta [1].

3.1.3 SMACK. SMACK [38] is both a modular software verifica-
tion toolchain and a self-contained software verifier. It is capable of
translating LLVM IR to Boogie [7], a popular intermediate verifica-
tion language. It is used by several tools as a frontend as Boogie was
specifically designed to simplify the implementation of verification
algorithms. However, the SSA representation originating in LLVM
is transferred into the Boogie code.

Tools building on the utilities of SMACK are SMACK [38] itself
and Dartagnan [28].

3.1.4 Goto-CC. Goto-CC4 compiles C/C++ code to "GOTO" pro-
grams (i.e. control-flow graphs) to be used mainly by verification or
testing tools (i.e. GOTO programs are not meant to be executed). It
is part of the CProver framework, a software verification platform
known mainly for CBMC, a BMC verifier for C and C++ programs.
It can handle the build system of large projects replacing either gcc
or Microsoft’s Visual Studio compiler, sparing the verification tool
from implementing this often cumbersome task.

Tools using Goto-CC are CBMC [35], 2LS [16] and Pinaka [19].

3.2 Discussion
Out of the 21 tools only 4 uses a frontend other than the ones
introduced in Section 3.1, and most of these 4 are not BMC or
CEGAR-based tools. Based on Table 1 there is a clear bias towards
the Eclipse CDT parser in CEGAR-based tools, whereas the remain-
ing verifiers are distributed between LLVM and Goto-CC, with 7
out of 10 building on an LLVM-based solution.

Next, we provide our interpretation and examine the potential
theoretical reasons behind the patterns shown by the data. Our

2https://wiki.eclipse.org/CDT/designs/Overview_of_Parsing
3https://llvm.org/
4https://www.cprover.org/Goto-CC/

starting hypothesis is that tools have a motivation to use more
advanced and well-established compiler frameworks with a lot of
optimizations and utilities and a wide support for language con-
structs. Therefore, we assume the deviation is when tools choose a
less advanced framework such as the Eclipse CDT instead of LLVM.

Based on our experience as developers, we place the focus on
the effect of the SSA form inherent in the LLVM IR. The following
sections summarize the consequences of this transformation with
regard to BMC and CEGAR.

3.2.1 Models in SSA for BMC. As introduced in Section 2.2.1, BMC
encodes the explored paths in an SMT formula, which uses con-
stants and thus benefits from an SSA form. By using LLVM as a
frontend, the transformation step to such an SSA format is already
implemented and applied while the model transformation happens.

Furthermore the long years of work and many active users of
the optimizations of the LLVM project ensure a level of quality that
cannot be easily replicated and these optimizations are executed
on the SSA format (i.e. on the LLVM IR) already.

Another advantage of the LLVM project is that it is comprehen-
sive in the sense that many non-trivial and complex semantic rules
of the C language are automatically transformed into the much
more straightforward format of LLVM IR, e.g., integer promotion,
overflows with wraparounds, implicit casts and operator prece-
dence are already handled by clang, making the implementation of
model transformation easier.

These capabilities make the LLVM project the most common
choice for BMC tools, especially when an out-of-the-box solution
is beneficial.

In contrast to LLVM, Goto-CC was made specifically with veri-
fication in mind. Although it does execute some necessary trans-
formations to make the input unambiguous, it does not utilize
aggressive optimizations, rather it just creates a fairly verbose CFA
out of the code. Tools capable of parsing this CFA can verify it
directly or implement and apply some further transformations, e.g.
optimizations or simplifications on it.

Thismakes Goto-CC another common choice, as it providesmore
customizability in exchange for losing the optimization passes of
LLVM.

3.2.2 Models in SSA for CEGAR. One of the key features of CE-
GAR is utilizing an abstract domain over the variables of the input
task to tackle state space explosion. Ideally CEGAR converges to
such an abstraction level where the feasibility of a proof or a coun-
terexample is verifiable in a reasonable amount of time, e.g., finding
predicates that are enough to show that the input task is safe with-
out enumerating all possible values.

In software model checking, there is often a semantic meaning
or pattern hidden behind variables [24] and the effect of these
patterns when using different abstract domains can even be used
to aid verification [4]. If variable patterns get lost during the initial
model transformation, CEGAR might have a much harder time
finding an optimal abstraction level. Therefore, any frontend that
erases this information will be disadvantageous for the verification
workflow.

One such frontend is LLVM, where the SSA format burdens
variable patterns from two separate perspectives: first, multiple
SSA variables express the original role of a single variable (and

https://wiki.eclipse.org/CDT/designs/Overview_of_Parsing
https://llvm.org/
https://www.cprover.org/Goto-CC/
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hence a refinement using a single SSA variable might be too fine-
grained); and second, further optimization passes might make a
single SSA variable refer to multiple variables in the source file. This
also eliminates the solution of mapping the variables to their SSA
counterparts and only allowing refinement via groups of variables
– which will also introduce too many variables in one iteration,
making the resulting level of abstraction too low and therefore
suboptimal.

Furthermore, the SSA-representation of a program tends to have
more variables than its source, even when aggressive optimizations
are used. This number itself can hinder the performance of CE-
GAR, as more iterations are necessary to achieve the same level
of abstraction, and the precision will contain too many variables.
For example, as we have seen in Section 2.2.2, predicate analysis is
generally more expressive than using explicit-value abstraction –
but predicate abstraction relies on finding a small set of expressions
to track, as too many will result in poor performance.

The same problem will not burden BMC, as it already utilizes an
SSA format and does not rely on abstraction. The trivial solution
to this issue is finding an approach, which transforms the input
program directly from the code, eliminating the SSA step.

What we have seen in Table 1 is that CEGAR-based tools are not
that likely to use LLVM as their frontend as other tools. Both large
CEGAR verifier families employ the Eclipse CDT project instead.

The C and C++ parser of the Eclipse CDT project was designed
mainly for performance. It handles preprocessing and then creates
an AST for each translation unit, which can be processed through its
API. It handles ambiguity, but does not compute type information.
It is an "all-in-one" solution handling the difficult tasks of parsing C
out of the box. The disadvantage of this is that the verification tool
might want to handle these difficulties and corner cases by itself
instead of the pre-defined way, warranting a parser which is less
monolithic and works on a lower abstraction level.

4 DESIGNING CEGAR FRONTENDS
Based on our findings, we established that an end-to-end frontend
project like LLVM would be beneficial to the software model check-
ing community, without its SSA-format. We propose the following
requirements for a frontend framework built foremost for verifica-
tion purposes:

R1 [Formal] The resulting model shall be mathematically
precise and algorithmically easy to interpret

R2 [Configurable] The transformation process shall be con-
figurable in terms of handling undefined elements of the
source language

R3 [Direct Access] The analyses must have direct access to
variables in the C code

R4 [Verifier-Centric] The resulting model should be opti-
mized for verification, not for executable generation

R5 [Metadata Access] The verification tools must have ac-
cess to metadata from the source file

R6 [Unhandled Patterns] The transformation must raise an
exception if an unhandled pattern is found, lest an erroneous
model be created

R1 [Formal] is generally applicable to all formal models as men-
tioned in Section 2, and all examined frontends fulfil this criterion.

R2 [Configurable] is necessary to deal with ambiguities in the
source language transparently, as hiding these details might cause
unwanted results. At the minimum, a warning has to be issued to
the user that the input program contains under-defined patterns.

The rationale for R3 [Direct Access] is well established by
Section 3.2.2: if a CEGAR-based analysis does not have direct access
to variables, discovering the underlying patterns either takes more
iterations and therefore time, or this information is simply lost.

R4 [Verifier-Centric] is based on the observation that con-
ventional compilation and software verification rely on different
optimization techniques. For example, bit-precise expressions are
easy to execute on an actual processor, while reasoning about them
is very resource-intensive for SMT-solvers [17].

R5 [Metadata Access] is more applicable to the verification
workflow than the analysis itself, as producing a counterexample
is arguably more important for the developers than determining
safety. This way, the trace causing the unsafe behavior to appear is
clearly in front of the user, which can be used to track down and
eliminate the bug. To achieve this, the verification tool needs to
map the output of the analysis (i.e., a trace in the formal model) to
syntactic elements of the source file.

R6 [Unhandled Patterns] addresses the issue of completeness.
While it might be possible to handle all elements of the input pro-
gramming language, it is certainly advisable to define a smaller
subset which is supported in its entirety, rather than try and handle
every corner-case by itself. Such constraints are common in the
domain of safety critical systems, as more conventional quality as-
surance methods (e.g., certification) require a clearly defined input
language as well [32]. If an input does not follow the constraints of
this subset, the parser needs to raise and exception and terminate
parsing, as the resulting model is almost certainly erroneous.

As shown before, different analyses rely on different prepro-
cessing steps. Therefore, we divide the workflow into two major
stages. First, the input program is mapped to a so-called verbose
CFA, which is common to all analyses. Then, the verbose CFA is fur-
ther transformed and optimized, resulting in the final CFA, which
will serve as the input model to the analysis backend. This way, a
potential user can easily swap out parts of the workflow to better
suite their needs. Note that the process is described for a single
source file, where pre-processing has already taken place.

4.1 Input to Verbose CFA
To fulfill R3 [Direct Access] and R5 [Metadata Access], the
transformation process needs to work on the syntactic level of the
source code. This way, the process can be sure to include all neces-
sary metadata (e.g., line numbers and variable names) in the model.
Furthermore, we have to define a mapping from each element of the
input language to a model element of the resulting verbose CFA.

In order to handle all elements properly, the formalism of a
verbose CFA has to be extended with an equivalent of C-style func-
tions. This can be done by defining the verbose CFA as a collection
of simpler CFAs (i.e., procedures), each having a list of parameter
declarations along with directions in or out for input and output
parameters (i.e., return value(s)). Furthermore, the edges of the
simple CFAs have to allow procedure invocations as well, which
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specify expressions for the input parameter bindings, and variables
for the return values.

Even though we could follow the same pattern and apply it to
other elements of the C language (e.g., a separate statement for a
do-while loop), we have to pay attention to R1 [Formal]: if the
resulting model is not a simple enough representation of the input,
it is superfluous to apply the transformation in the first place.

R2 [Configurable] is only relevant at this stage, because the C
standard contains many points of uncertainty, while the resulting
verbose CFA should be unambiguous. As an example, the data type
char is not defined to be unsigned or signed when declared with-
out a signedness qualifier. This not only determines the meaning of
a bit-pattern in a char variable, but also specifies if a wrap-around
should occur when the value is too big to fit in the designated
memory location – in the case of an unsigned char, 255 + 1 will
result in 0, but for a signed char the result of −128 − 1 is unde-
fined [34], which is another ambiguity as well. Our advice is to
follow the patterns of well-established projects such as GCC5 or
Clang/LLVM [36] by default, but warn the user about this occur-
rence and allow for an easy redefinition of its handling – in this
case char is signed, and overflowing signed values wrap around
as their twos-complement representations.

Perhaps the most important underspecified part in C is the width
of integer types. Minimum widths and a strict sequence of size
(rank) is given for integers, but their precise values are left to be
implementation-specific. To deal with this uncertainty, the trans-
formation has to be configurable to support any legal architecture.
For example, the competition rules of SV-COMP [8] specify the use
of two data size neutral programming models defined by the Single
UNIX Specification6, ILP32 and LP64. These are safe default val-
ues, but custom architectures need to be supported as well. LLVM
(through Clang) only allows named programming models by de-
fault, and has to be ported to any other architecture – which is a
disadvantage against source-level frontends such as Eclipse CDT
or goto-cc, which allow later steps in the workflow to use a custom
programming model.

4.2 Optimizing the CFA
The verbose CFA is already a formal model, but its verbosity makes
it suboptimal for the analyses. Depending on the capabilities of the
utilized analysis, function calls or pointers (among others) might
not be supported natively, and therefore a pre-processing step is
necessary to clean up the CFA. Furthermore, size reduction and
other graph transformations might also be necessary to make the
model verifiable in a timely manner – due to the iterative nature
of CEGAR, if an optimization can be done prior to starting the
analysis, the performance improvement might show up in each
iteration and therefore multiply its effectiveness.

Building on the architecture of the LLVM project [36], the opti-
mization stage is further divided into passes. Each pass is a separate
(and mostly independent) graph transformation step, which are
executed sequentially over the verbose CFA. The resulting model
is no longer a verbose CFA.

5https://gcc.gnu.org/
6https://unix.org/whitepapers/64bit.html

Based on their desired effect, passes can be grouped into two
categories: elimination passes transform unwanted model elements
into equivalent representations over supported elements, and opti-
mization passes change model elements deemed too verbose into
more concise forms. Most of these passes will be tool- and analysis-
dependent, but we introduce some that generally applicable to the
workflow.

4.2.1 Function Inlining. If an analysis only supports single-procedure
CFAs (as the conventional definition does not allow procedure invo-
cations), the procedure calls need to be inlined, i.e., substituted for
the definition of the procedure. As an example for an elimination
pass, this can be done iteratively: starting from the main procedure
and only inlining the functions to a single layer, repeating the pro-
cess until no more procedure invocation is found. However, in the
case of recursive programs, this method will not terminate, and
therefore an exception needs to be raised for the user (as per R6
[Unhandled Patterns]).

A note onR6 [Unhandled Patterns] and external (or otherwise
undefined) function calls in C. The verbose CFA already allows
procedure calls on edges – so allowing non-specified C-functions
to remain as non-specified procedure invocations seems trivial. Out
parameters can be havoc-ed (i.e., nondeterministically assigned),
and in parameters discarded. However, this might produce false
positive results: consider the fabs(f: float): float standard
library function. Without prior knowledge, the statement −1.0f ==

fabs(−1.0f ) is SAT, because a nondeterministic fabs() might as
well return the value it was passed. However, in practice, the value
is never a negative number, and therefore a seemingly feasible trace
might be actually infeasible – the reason why R6 [Unhandled
Patterns] is important.

The solution to this problem relies on building a standard li-
brary of functions for the frontend as well. Besides covering the
functions in the C standard library, precedence exists for such col-
lections of functions in more specific circumstances as well. For
example, SV-COMP specifies several custom functions to deal with
nondeterminism, or signal the start of an atomic block [8]. If the
transformation process strictly follows R6 [Unhandled Patterns],
encountering any unknown function has to raise an exception –
which also warrants the easy specification of an allow-list of func-
tions, should the user decide that the function may be modelled
nondeterministically.

4.2.2 Nondeterministic Values. As mentioned above, it might be
beneficial to model nondeterministic values in the model (such as
user input). However, C and the compiler imposes implicit con-
straints on such values by defining their signedness and size –
details that need to be preserved when the expressions are encoded
for the SMT-solvers. For example, the trace ℎ𝑎𝑣𝑜𝑐 𝑥 ; [𝑥 == −1]
might be feasible if 𝑥 was a signed int, but infeasible if it was
an unsigned char. One possible solution is to use bit-precise rea-
soning, which hinders performance [17]; or assumptions asserting
the ranges of the data type have to follow each havoc statement to
constrain its value.

4.2.3 Large-Block Encoding. As an example for a pure optimization
pass, creating a large-block encoding variant of the CFA can greatly
reduce the verification time of a task [9]. Large-block encoding

https://gcc.gnu.org/
https://unix.org/whitepapers/64bit.html
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replaces sequential edges with a single edge containing an ordered
conjunction of their statements, and parallel edges with an edge
containing a disjunction of their statements.

4.2.4 Removing Dead-Ends. Some branches of the CFA may not
contain any directed path toward an unsafe state after the initial
transformation. These sections can safely be discarded, as their
exploration will never result in a change of verdict – if other parts
of the program contain bugs then the program is erroneous, and if
all other parts are safe then the entire program is also safe.

5 EXPERIMENTAL EVALUATION
To support our previous claims, we devised an experiment that
examines the behavior of an LLVM- and a grammar-based frontend
when combined with BMC and CEGAR. To achieve a fair compar-
ison, we implemented the two frontends in the same verification
framework [40], which has access to both BMC- and CEGAR-based
analysis backends. We do not intend to compare the BMC and CE-
GAR algorithms with each other, but rather the frontend techniques
used and their effect on the performance of the algorithms.

As CEGAR is a highly configurable family of verification al-
gorithms, its exhaustive comparison to BMC is not feasible. To
demonstrate the practical applicability of the presented approach,
we show that two fundamentally different applications of CEGAR
(namely, one based on explicit-value abstraction and one based on
predicate abstraction) both exhibit the same biases towards fron-
tend choice.

We intend to answer the following research questions:
RQ1 Does BMC benefit from a frontend with a transformation to

an SSA format compared to a more direct, grammar-based
approach?

RQ2 Does CEGAR with explicit-value abstraction benefit from
the grammar-based frontend compared to the frontend with
a transformation to an SSA format?

RQ3 Does CEGAR with Cartesian predicate abstraction benefit
from the grammar-based frontend compared to the frontend
with a transformation to an SSA format?

5.1 Implementation
We chose to implement a proof-of-concept version of the fron-
tends in our verification framework, which is built mainly around
abstraction-refinement, i.e., CEGAR [20] techniques. For this work
we also added a BMC algorithm to the framework’s repertoire using
an iteratively deepening BMC algorithm [10]. The framework does
not have a native C-frontend, but it has been extensively validated
using other sources of formal models and external frontends for C
verification. Native support for CFAs was already present, but an
extended version had to be added to conform to the requirements
of the verbose CFA.

5.1.1 Frontend Implementation. The LLVM- and grammar-based
frontend implementations build on LLVM 11.07 and ANTLR [37],
respectively. Grammar-based C frontend is an own C frontend of the
tool, using an ANTLR grammar to parse and transform the program
into a verbose CFA. Furthermore, custom passes are available to
optimize the resulting model, utilizing the approach introduced in
7https://releases.llvm.org/11.0.0/

Section 4. The choice fell on ANTLR instead of a more integrated
solution such as Eclipse CDT or Goto-CC due to the lower-level
access to the source file, eliminating all black boxes that could hinder
verification or counterexample generation. LLVM-based C Frontend
module is a small external library, serving as a lightweight LLVM-
based parser (while also applying optimizations on the LLVM IR). Its
goal was to leave only the CFA generation steps in the verification
framework and move everything else (parsing, optimizations) into
the native module to better utilize the capabilities of LLVM.

Both frontends use passes to transform an intermediate represen-
tation: the LLVM-based one uses both built-in and custom LLVM
passes, and the ANTLR-based uses only custom ones. Both use a
version of the following:

• Function inlining
• Nondeterministic input transformation
• Dead code removal
• Various expression simplification passes

Besides these, LLVMhas access tomore advanced simplification and
transformation techniques such as simplifycfg for simplifying the
control flow and sroa (scalar replacement of aggregates) to break
up complex structures such as arrays and structures into individual
primitives, greatly reducing the workload of the SMT solver. On the
other hand, the ANTLR-based frontend has access to a large-block
encoding algorithm that LLVM lacks [9]. The summary of the two
workflows can be seen in Figure 2.

5.1.2 Backend Configurations. As CEGAR is a highly configurable
algorithm and success rates can deviate heavily between config-
urations, we used two generally well-performing configurations
from the predicate and the explicit domain, using backwards binary
interpolation and sequential interpolation, respectively. For a more
detailed description, refer to [31].

Our implementation of Bounded Model Checking utilizes an it-
eratively deepening bound to work around the issue of choosing
a bound, which is either too small or too large. Thus the practical
limit stopping the analysis is the time limit, which is the same for
each configuration (900 seconds).

5.1.3 Input Programs. As input we use a subset of the benchmark-
ing set of SV-COMP8, namely a number of sub-categories from the
C tasks of the ReachSafety category.

As the frontends have differences in what language elements
they support, we used only those SV-COMP subcategories where
both should be capable. We excluded the categories Arrays, Floats,
ProductLines (containing combined structs and function pointers),
Loops, Heap, Recursive and Combinations (also containing a large
number of floating point operations).

Among the 2115 chosen input tasks there is a similar amount of
safe and unsafe tasks (namely 1117 safe and 998 unsafe programs).

5.2 Execution Environment
The benchmarks were executed with the benchmarking framework
of SV-COMP, Benchexec [14] version 3.8, providing reliable mea-
surements on resources. The ANTLR-based frontend is built into

8The commit we used: https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-
/tree/99d37c5b4072891803b9e5c154127c912477f705

https://releases.llvm.org/11.0.0/
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/99d37c5b4072891803b9e5c154127c912477f705
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/tree/99d37c5b4072891803b9e5c154127c912477f705
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Figure 2: Summary of the workflow for the grammar- and LLVM-based frontend implementations

Figure 3: Number of successful results per configuration

the verification framework, while the LLVM-based frontend is a sep-
arate module. The experiment was executed on virtual machines
running Ubuntu 20.04.2 LTS with Java OpenJDK 11.0.13.

There was a memory limit of 15GB and a CPU core limit of 8
cores set. There was also a CPU time limit of 900 seconds per task,
the same limit as the CPU time limit used on SV-COMP.

5.3 Evaluation
In Figure 3 the number of successful analyses is shown for each
algorithm-frontend pair. Each configuration was executed on the
same 2115 tasks, as described in Section 5.1.3, with a 15 minute
CPU time limit per task.

5.3.1 Evaluation on BMC. RQ1 asked if BMC benefits from using
the frontend creating a model in an SSA representation compared
to a more direct, grammar-based approach.

The BMC algorithm using the LLVM based frontend did not just
outperform the BMC-ANTLR pair, but it even came up as second
best, showing the power of both the LLVM IR and the optimizations.
BMC with LLVM outperformed BMC with ANTLR by 119 tasks,
resulting in a 40.13% difference.

5.3.2 Evaluation on CEGAR. The questions RQ2 and RQ3 asked if
CEGAR with Cartesian predicate and explicit analysis benefits from
using the ANTLR-based frontend with a more direct transformation
compared to a frontend transforming the input into an SSA format.
Both CEGAR analyses using the ANTLR frontend performed really
well. Predicate analysis finished in first place and explicit value
analysis in third place globally.

The same algorithms became the worst performing configu-
rations when executed with the LLVM frontend. The predicate
analysis solved the least tasks from all configurations – indicating
that it might be more sensitive to losing information due to SSA.

What makes these results evenmore convincing is that the LLVM
project and its optimizations are constantly being polished by a
broad user-base, while the optimization steps implemented in the
grammar-based frontend are much less mature.

5.3.3 Conclusion of the Experiment. The results of the executed
benchmark line up with our experiences and conclusions detailed
in this work: there is a loss of performance if using CEGAR with a
frontend which transforms the input program to an SSA format.

There is also a difference in this loss depending on the abstract
domain: while both explicit and Cartesian predicate analysis seem
to be affected, predicate analysis suffers amore significant loss when
receiving models in an SSA format. This is as expected, because
both the larger number of variables and their single use nature make
it more difficult (or even impossible) to deduce suitable predicates.

5.3.4 Threats to Validity. Although the results with the evaluated
abstract domains are promising, other domains and configurations
might require further benchmarks, as CEGAR includes a broad
set of possible domains and parameters. While some of these may
perform better in some cases, we believe it is unlikely that this
effect could compensate for the observed performance degradation
with SSA.

Due to the differences in what the frontends can handle, we had
to narrow down the subset of input tasks to only around 2000 C
programs – this is a definite loss in how representative the mea-
surements are, but still includes 5 distinct subcategories.

The benchmarks were evaluated by using the metric of success-
fully solved tasks in 15 minutes – the same metric, which is used
on SV-COMP to calculate a tool’s score. On the other hand, we did
not evaluate the results based on CPU or wall time, as based on
earlier and current results, most tasks that the tool is capable to
solve are solved in under a few minutes, making it hard to draw
any conclusions based on this metric.

5.4 Reproducibility
An artifact for the reproduction of these experiments is publicly
available at Zenodo [5]. This includes the sources and binaries of the
implementation, as well as the C programs used in the evaluation
process.
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6 CONCLUSION AND FUTUREWORK
In this paper, we intended to shed light on the less obvious difficul-
ties of implementing software model checkers for programming
languages (in this case, C): the parsing and processing of the input
program. While it is very appealing to use mature compiler frame-
works as frontends for the verification algorithms, we showed that
existing tools exhibit a bias towards certain combinations, favoring
well-established technologies implemented in the LLVM framework
in some cases and avoiding them in others. We highlighted that
this bias is probably due to the fact that the LLVM framework trans-
forms programs into an intermediate representation that comes
in a static single assignment form. We presented our arguments
on why this is disadvantageous for abstraction-based algorithms,
which is based on theoretical reasons as well as our own expe-
rience. Then we outlined an ideal frontend that would combine
the benefits of existing technologies, but tailored for formal veri-
fication instead of the generation of executables. To demonstrate
that CEGAR-based algorithms are indeed highly sensitive to the
SSA form, we implemented a custom frontend along the lines of
the ideal solution beside the former LLVM frontend of our model
checker. Our performance evaluation clearly shows that even with
such a low effort (compared to the development that went into
LLVM) we can achieve much higher performance – but custom
approaches will be unlikely to reach the coverage of LLVM in terms
of language support. Therefore, we hope that this paper will inspire
discussion in the community and potentially motivate the design
and implementation of an LLVM-like framework tailored for formal
verification tools.
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